This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Axiom of Union using the standard abbreviation for union. Given any set x , its union y exists. (Contributed by NM, 4-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniex2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-un | ||
| 2 | eluni | ||
| 3 | 2 | imbi1i | |
| 4 | 3 | albii | |
| 5 | 4 | exbii | |
| 6 | 1 5 | mpbir | |
| 7 | 6 | sepexi | |
| 8 | dfcleq | ||
| 9 | 8 | exbii | |
| 10 | 7 9 | mpbir |