This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqsnuniex | ⊢ ( 𝐴 = { ∪ 𝐴 } → ∪ 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq | ⊢ ( 𝐴 = { ∪ 𝐴 } → ∪ 𝐴 = ∪ { ∪ 𝐴 } ) | |
| 2 | unieq | ⊢ ( { ∪ 𝐴 } = ∅ → ∪ { ∪ 𝐴 } = ∪ ∅ ) | |
| 3 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 4 | 2 3 | eqtrdi | ⊢ ( { ∪ 𝐴 } = ∅ → ∪ { ∪ 𝐴 } = ∅ ) |
| 5 | 1 4 | sylan9eq | ⊢ ( ( 𝐴 = { ∪ 𝐴 } ∧ { ∪ 𝐴 } = ∅ ) → ∪ 𝐴 = ∅ ) |
| 6 | 5 | sneqd | ⊢ ( ( 𝐴 = { ∪ 𝐴 } ∧ { ∪ 𝐴 } = ∅ ) → { ∪ 𝐴 } = { ∅ } ) |
| 7 | 0inp0 | ⊢ ( { ∪ 𝐴 } = ∅ → ¬ { ∪ 𝐴 } = { ∅ } ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 = { ∪ 𝐴 } ∧ { ∪ 𝐴 } = ∅ ) → ¬ { ∪ 𝐴 } = { ∅ } ) |
| 9 | 6 8 | pm2.65da | ⊢ ( 𝐴 = { ∪ 𝐴 } → ¬ { ∪ 𝐴 } = ∅ ) |
| 10 | snprc | ⊢ ( ¬ ∪ 𝐴 ∈ V ↔ { ∪ 𝐴 } = ∅ ) | |
| 11 | 10 | bicomi | ⊢ ( { ∪ 𝐴 } = ∅ ↔ ¬ ∪ 𝐴 ∈ V ) |
| 12 | 11 | con2bii | ⊢ ( ∪ 𝐴 ∈ V ↔ ¬ { ∪ 𝐴 } = ∅ ) |
| 13 | 9 12 | sylibr | ⊢ ( 𝐴 = { ∪ 𝐴 } → ∪ 𝐴 ∈ V ) |