This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014) (Proof shortened by Mario Carneiro, 11-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unconn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) → ( ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) → ( 𝐽 ↾t ( 𝐴 ∪ 𝐵 ) ) ∈ Conn ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) | |
| 2 | uniiun | ⊢ ∪ { 𝐴 , 𝐵 } = ∪ 𝑘 ∈ { 𝐴 , 𝐵 } 𝑘 | |
| 3 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → 𝑋 ∈ 𝐽 ) |
| 6 | simpl2l | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → 𝐴 ⊆ 𝑋 ) | |
| 7 | 5 6 | ssexd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → 𝐴 ∈ V ) |
| 8 | simpl2r | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → 𝐵 ⊆ 𝑋 ) | |
| 9 | 5 8 | ssexd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → 𝐵 ∈ V ) |
| 10 | uniprg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) | |
| 11 | 7 9 10 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 12 | 2 11 | eqtr3id | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → ∪ 𝑘 ∈ { 𝐴 , 𝐵 } 𝑘 = ( 𝐴 ∪ 𝐵 ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → ( 𝐽 ↾t ∪ 𝑘 ∈ { 𝐴 , 𝐵 } 𝑘 ) = ( 𝐽 ↾t ( 𝐴 ∪ 𝐵 ) ) ) |
| 14 | vex | ⊢ 𝑘 ∈ V | |
| 15 | 14 | elpr | ⊢ ( 𝑘 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) |
| 16 | simpl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ) | |
| 17 | sseq1 | ⊢ ( 𝑘 = 𝐴 → ( 𝑘 ⊆ 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) | |
| 18 | 17 | biimprd | ⊢ ( 𝑘 = 𝐴 → ( 𝐴 ⊆ 𝑋 → 𝑘 ⊆ 𝑋 ) ) |
| 19 | sseq1 | ⊢ ( 𝑘 = 𝐵 → ( 𝑘 ⊆ 𝑋 ↔ 𝐵 ⊆ 𝑋 ) ) | |
| 20 | 19 | biimprd | ⊢ ( 𝑘 = 𝐵 → ( 𝐵 ⊆ 𝑋 → 𝑘 ⊆ 𝑋 ) ) |
| 21 | 18 20 | jaoa | ⊢ ( ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) → ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → 𝑘 ⊆ 𝑋 ) ) |
| 22 | 16 21 | mpan9 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) → 𝑘 ⊆ 𝑋 ) |
| 23 | 15 22 | sylan2b | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) ∧ 𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝑘 ⊆ 𝑋 ) |
| 24 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) | |
| 25 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 26 | 24 25 | sylib | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 27 | eleq2 | ⊢ ( 𝑘 = 𝐴 → ( 𝑥 ∈ 𝑘 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 28 | 27 | biimprd | ⊢ ( 𝑘 = 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑘 ) ) |
| 29 | eleq2 | ⊢ ( 𝑘 = 𝐵 → ( 𝑥 ∈ 𝑘 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 30 | 29 | biimprd | ⊢ ( 𝑘 = 𝐵 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑘 ) ) |
| 31 | 28 30 | jaoa | ⊢ ( ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑘 ) ) |
| 32 | 26 31 | mpan9 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) → 𝑥 ∈ 𝑘 ) |
| 33 | 15 32 | sylan2b | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) ∧ 𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝑥 ∈ 𝑘 ) |
| 34 | simpr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) | |
| 35 | oveq2 | ⊢ ( 𝑘 = 𝐴 → ( 𝐽 ↾t 𝑘 ) = ( 𝐽 ↾t 𝐴 ) ) | |
| 36 | 35 | eleq1d | ⊢ ( 𝑘 = 𝐴 → ( ( 𝐽 ↾t 𝑘 ) ∈ Conn ↔ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) ) |
| 37 | 36 | biimprd | ⊢ ( 𝑘 = 𝐴 → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn → ( 𝐽 ↾t 𝑘 ) ∈ Conn ) ) |
| 38 | oveq2 | ⊢ ( 𝑘 = 𝐵 → ( 𝐽 ↾t 𝑘 ) = ( 𝐽 ↾t 𝐵 ) ) | |
| 39 | 38 | eleq1d | ⊢ ( 𝑘 = 𝐵 → ( ( 𝐽 ↾t 𝑘 ) ∈ Conn ↔ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) |
| 40 | 39 | biimprd | ⊢ ( 𝑘 = 𝐵 → ( ( 𝐽 ↾t 𝐵 ) ∈ Conn → ( 𝐽 ↾t 𝑘 ) ∈ Conn ) ) |
| 41 | 37 40 | jaoa | ⊢ ( ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) → ( ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) → ( 𝐽 ↾t 𝑘 ) ∈ Conn ) ) |
| 42 | 34 41 | mpan9 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) → ( 𝐽 ↾t 𝑘 ) ∈ Conn ) |
| 43 | 15 42 | sylan2b | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) ∧ 𝑘 ∈ { 𝐴 , 𝐵 } ) → ( 𝐽 ↾t 𝑘 ) ∈ Conn ) |
| 44 | 3 23 33 43 | iunconn | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → ( 𝐽 ↾t ∪ 𝑘 ∈ { 𝐴 , 𝐵 } 𝑘 ) ∈ Conn ) |
| 45 | 13 44 | eqeltrrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) → ( 𝐽 ↾t ( 𝐴 ∪ 𝐵 ) ) ∈ Conn ) |
| 46 | 45 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) → ( 𝐽 ↾t ( 𝐴 ∪ 𝐵 ) ) ∈ Conn ) ) |
| 47 | 46 | 3expia | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → ( ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) → ( 𝐽 ↾t ( 𝐴 ∪ 𝐵 ) ) ∈ Conn ) ) ) |
| 48 | 47 | exlimdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ) → ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → ( ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) → ( 𝐽 ↾t ( 𝐴 ∪ 𝐵 ) ) ∈ Conn ) ) ) |
| 49 | 1 48 | biimtrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ) → ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ → ( ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) → ( 𝐽 ↾t ( 𝐴 ∪ 𝐵 ) ) ∈ Conn ) ) ) |
| 50 | 49 | 3impia | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) → ( ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) → ( 𝐽 ↾t ( 𝐴 ∪ 𝐵 ) ) ∈ Conn ) ) |