This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014) (Proof shortened by Mario Carneiro, 11-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unconn | |- ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ ( A i^i B ) =/= (/) ) -> ( ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) -> ( J |`t ( A u. B ) ) e. Conn ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( ( A i^i B ) =/= (/) <-> E. x x e. ( A i^i B ) ) |
|
| 2 | uniiun | |- U. { A , B } = U_ k e. { A , B } k |
|
| 3 | simpl1 | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> J e. ( TopOn ` X ) ) |
|
| 4 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 5 | 3 4 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> X e. J ) |
| 6 | simpl2l | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> A C_ X ) |
|
| 7 | 5 6 | ssexd | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> A e. _V ) |
| 8 | simpl2r | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> B C_ X ) |
|
| 9 | 5 8 | ssexd | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> B e. _V ) |
| 10 | uniprg | |- ( ( A e. _V /\ B e. _V ) -> U. { A , B } = ( A u. B ) ) |
|
| 11 | 7 9 10 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> U. { A , B } = ( A u. B ) ) |
| 12 | 2 11 | eqtr3id | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> U_ k e. { A , B } k = ( A u. B ) ) |
| 13 | 12 | oveq2d | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> ( J |`t U_ k e. { A , B } k ) = ( J |`t ( A u. B ) ) ) |
| 14 | vex | |- k e. _V |
|
| 15 | 14 | elpr | |- ( k e. { A , B } <-> ( k = A \/ k = B ) ) |
| 16 | simpl2 | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> ( A C_ X /\ B C_ X ) ) |
|
| 17 | sseq1 | |- ( k = A -> ( k C_ X <-> A C_ X ) ) |
|
| 18 | 17 | biimprd | |- ( k = A -> ( A C_ X -> k C_ X ) ) |
| 19 | sseq1 | |- ( k = B -> ( k C_ X <-> B C_ X ) ) |
|
| 20 | 19 | biimprd | |- ( k = B -> ( B C_ X -> k C_ X ) ) |
| 21 | 18 20 | jaoa | |- ( ( k = A \/ k = B ) -> ( ( A C_ X /\ B C_ X ) -> k C_ X ) ) |
| 22 | 16 21 | mpan9 | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) /\ ( k = A \/ k = B ) ) -> k C_ X ) |
| 23 | 15 22 | sylan2b | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) /\ k e. { A , B } ) -> k C_ X ) |
| 24 | simpl3 | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> x e. ( A i^i B ) ) |
|
| 25 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 26 | 24 25 | sylib | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> ( x e. A /\ x e. B ) ) |
| 27 | eleq2 | |- ( k = A -> ( x e. k <-> x e. A ) ) |
|
| 28 | 27 | biimprd | |- ( k = A -> ( x e. A -> x e. k ) ) |
| 29 | eleq2 | |- ( k = B -> ( x e. k <-> x e. B ) ) |
|
| 30 | 29 | biimprd | |- ( k = B -> ( x e. B -> x e. k ) ) |
| 31 | 28 30 | jaoa | |- ( ( k = A \/ k = B ) -> ( ( x e. A /\ x e. B ) -> x e. k ) ) |
| 32 | 26 31 | mpan9 | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) /\ ( k = A \/ k = B ) ) -> x e. k ) |
| 33 | 15 32 | sylan2b | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) /\ k e. { A , B } ) -> x e. k ) |
| 34 | simpr | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) |
|
| 35 | oveq2 | |- ( k = A -> ( J |`t k ) = ( J |`t A ) ) |
|
| 36 | 35 | eleq1d | |- ( k = A -> ( ( J |`t k ) e. Conn <-> ( J |`t A ) e. Conn ) ) |
| 37 | 36 | biimprd | |- ( k = A -> ( ( J |`t A ) e. Conn -> ( J |`t k ) e. Conn ) ) |
| 38 | oveq2 | |- ( k = B -> ( J |`t k ) = ( J |`t B ) ) |
|
| 39 | 38 | eleq1d | |- ( k = B -> ( ( J |`t k ) e. Conn <-> ( J |`t B ) e. Conn ) ) |
| 40 | 39 | biimprd | |- ( k = B -> ( ( J |`t B ) e. Conn -> ( J |`t k ) e. Conn ) ) |
| 41 | 37 40 | jaoa | |- ( ( k = A \/ k = B ) -> ( ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) -> ( J |`t k ) e. Conn ) ) |
| 42 | 34 41 | mpan9 | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) /\ ( k = A \/ k = B ) ) -> ( J |`t k ) e. Conn ) |
| 43 | 15 42 | sylan2b | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) /\ k e. { A , B } ) -> ( J |`t k ) e. Conn ) |
| 44 | 3 23 33 43 | iunconn | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> ( J |`t U_ k e. { A , B } k ) e. Conn ) |
| 45 | 13 44 | eqeltrrd | |- ( ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) /\ ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) ) -> ( J |`t ( A u. B ) ) e. Conn ) |
| 46 | 45 | ex | |- ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ x e. ( A i^i B ) ) -> ( ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) -> ( J |`t ( A u. B ) ) e. Conn ) ) |
| 47 | 46 | 3expia | |- ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) ) -> ( x e. ( A i^i B ) -> ( ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) -> ( J |`t ( A u. B ) ) e. Conn ) ) ) |
| 48 | 47 | exlimdv | |- ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) ) -> ( E. x x e. ( A i^i B ) -> ( ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) -> ( J |`t ( A u. B ) ) e. Conn ) ) ) |
| 49 | 1 48 | biimtrid | |- ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) ) -> ( ( A i^i B ) =/= (/) -> ( ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) -> ( J |`t ( A u. B ) ) e. Conn ) ) ) |
| 50 | 49 | 3impia | |- ( ( J e. ( TopOn ` X ) /\ ( A C_ X /\ B C_ X ) /\ ( A i^i B ) =/= (/) ) -> ( ( ( J |`t A ) e. Conn /\ ( J |`t B ) e. Conn ) -> ( J |`t ( A u. B ) ) e. Conn ) ) |