This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of unbnn that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unbnn2 | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) → 𝐴 ≈ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | ⊢ ( 𝑧 ∈ ω → suc 𝑧 ∈ ω ) | |
| 2 | sseq1 | ⊢ ( 𝑥 = suc 𝑧 → ( 𝑥 ⊆ 𝑦 ↔ suc 𝑧 ⊆ 𝑦 ) ) | |
| 3 | 2 | rexbidv | ⊢ ( 𝑥 = suc 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦 ) ) |
| 4 | 3 | rspcv | ⊢ ( suc 𝑧 ∈ ω → ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∃ 𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦 ) ) |
| 5 | sucssel | ⊢ ( 𝑧 ∈ V → ( suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ) | |
| 6 | 5 | elv | ⊢ ( suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) |
| 7 | 6 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) |
| 8 | 4 7 | syl6com | ⊢ ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ( suc 𝑧 ∈ ω → ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
| 9 | 1 8 | syl5 | ⊢ ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ( 𝑧 ∈ ω → ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) ) |
| 10 | 9 | ralrimiv | ⊢ ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∀ 𝑧 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) |
| 11 | unbnn | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑧 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ) → 𝐴 ≈ ω ) | |
| 12 | 10 11 | syl3an3 | ⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) → 𝐴 ≈ ω ) |