This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| Assertion | umgrnloopv | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | prnzg | ⊢ ( 𝑀 ∈ 𝑊 → { 𝑀 , 𝑁 } ≠ ∅ ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → { 𝑀 , 𝑁 } ≠ ∅ ) |
| 4 | neeq1 | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( 𝐸 ‘ 𝑋 ) ≠ ∅ ↔ { 𝑀 , 𝑁 } ≠ ∅ ) ) | |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( ( 𝐸 ‘ 𝑋 ) ≠ ∅ ↔ { 𝑀 , 𝑁 } ≠ ∅ ) ) |
| 6 | 3 5 | mpbird | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝐸 ‘ 𝑋 ) ≠ ∅ ) |
| 7 | fvfundmfvn0 | ⊢ ( ( 𝐸 ‘ 𝑋 ) ≠ ∅ → ( 𝑋 ∈ dom 𝐸 ∧ Fun ( 𝐸 ↾ { 𝑋 } ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝑋 ∈ dom 𝐸 ∧ Fun ( 𝐸 ↾ { 𝑋 } ) ) ) |
| 9 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 10 | 9 1 | umgredg2 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
| 11 | fveqeq2 | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) | |
| 12 | eqid | ⊢ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } | |
| 13 | 12 | hashprdifel | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) ) |
| 14 | 13 | simp3d | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → 𝑀 ≠ 𝑁 ) |
| 15 | 11 14 | biimtrdi | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 → 𝑀 ≠ 𝑁 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 → 𝑀 ≠ 𝑁 ) ) |
| 17 | 10 16 | syl5com | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → 𝑀 ≠ 𝑁 ) ) |
| 18 | 17 | expcom | ⊢ ( 𝑋 ∈ dom 𝐸 → ( 𝐺 ∈ UMGraph → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → 𝑀 ≠ 𝑁 ) ) ) |
| 19 | 18 | com23 | ⊢ ( 𝑋 ∈ dom 𝐸 → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁 ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑋 ∈ dom 𝐸 ∧ Fun ( 𝐸 ↾ { 𝑋 } ) ) → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁 ) ) ) |
| 21 | 8 20 | mpcom | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁 ) ) |
| 22 | 21 | ex | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑊 → ( 𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁 ) ) ) |
| 23 | 22 | com13 | ⊢ ( 𝐺 ∈ UMGraph → ( 𝑀 ∈ 𝑊 → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |