This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgrnloopv.e | |- E = ( iEdg ` G ) |
|
| Assertion | umgrnloopv | |- ( ( G e. UMGraph /\ M e. W ) -> ( ( E ` X ) = { M , N } -> M =/= N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrnloopv.e | |- E = ( iEdg ` G ) |
|
| 2 | prnzg | |- ( M e. W -> { M , N } =/= (/) ) |
|
| 3 | 2 | adantl | |- ( ( ( E ` X ) = { M , N } /\ M e. W ) -> { M , N } =/= (/) ) |
| 4 | neeq1 | |- ( ( E ` X ) = { M , N } -> ( ( E ` X ) =/= (/) <-> { M , N } =/= (/) ) ) |
|
| 5 | 4 | adantr | |- ( ( ( E ` X ) = { M , N } /\ M e. W ) -> ( ( E ` X ) =/= (/) <-> { M , N } =/= (/) ) ) |
| 6 | 3 5 | mpbird | |- ( ( ( E ` X ) = { M , N } /\ M e. W ) -> ( E ` X ) =/= (/) ) |
| 7 | fvfundmfvn0 | |- ( ( E ` X ) =/= (/) -> ( X e. dom E /\ Fun ( E |` { X } ) ) ) |
|
| 8 | 6 7 | syl | |- ( ( ( E ` X ) = { M , N } /\ M e. W ) -> ( X e. dom E /\ Fun ( E |` { X } ) ) ) |
| 9 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 10 | 9 1 | umgredg2 | |- ( ( G e. UMGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 ) |
| 11 | fveqeq2 | |- ( ( E ` X ) = { M , N } -> ( ( # ` ( E ` X ) ) = 2 <-> ( # ` { M , N } ) = 2 ) ) |
|
| 12 | eqid | |- { M , N } = { M , N } |
|
| 13 | 12 | hashprdifel | |- ( ( # ` { M , N } ) = 2 -> ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) ) |
| 14 | 13 | simp3d | |- ( ( # ` { M , N } ) = 2 -> M =/= N ) |
| 15 | 11 14 | biimtrdi | |- ( ( E ` X ) = { M , N } -> ( ( # ` ( E ` X ) ) = 2 -> M =/= N ) ) |
| 16 | 15 | adantr | |- ( ( ( E ` X ) = { M , N } /\ M e. W ) -> ( ( # ` ( E ` X ) ) = 2 -> M =/= N ) ) |
| 17 | 10 16 | syl5com | |- ( ( G e. UMGraph /\ X e. dom E ) -> ( ( ( E ` X ) = { M , N } /\ M e. W ) -> M =/= N ) ) |
| 18 | 17 | expcom | |- ( X e. dom E -> ( G e. UMGraph -> ( ( ( E ` X ) = { M , N } /\ M e. W ) -> M =/= N ) ) ) |
| 19 | 18 | com23 | |- ( X e. dom E -> ( ( ( E ` X ) = { M , N } /\ M e. W ) -> ( G e. UMGraph -> M =/= N ) ) ) |
| 20 | 19 | adantr | |- ( ( X e. dom E /\ Fun ( E |` { X } ) ) -> ( ( ( E ` X ) = { M , N } /\ M e. W ) -> ( G e. UMGraph -> M =/= N ) ) ) |
| 21 | 8 20 | mpcom | |- ( ( ( E ` X ) = { M , N } /\ M e. W ) -> ( G e. UMGraph -> M =/= N ) ) |
| 22 | 21 | ex | |- ( ( E ` X ) = { M , N } -> ( M e. W -> ( G e. UMGraph -> M =/= N ) ) ) |
| 23 | 22 | com13 | |- ( G e. UMGraph -> ( M e. W -> ( ( E ` X ) = { M , N } -> M =/= N ) ) ) |
| 24 | 23 | imp | |- ( ( G e. UMGraph /\ M e. W ) -> ( ( E ` X ) = { M , N } -> M =/= N ) ) |