This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A multigraph has no loops. (Contributed by AV, 27-Oct-2020) (Revised by AV, 30-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrnloop2 | ⊢ ( 𝐺 ∈ UMGraph → { 𝑁 , 𝑁 } ∉ ( Edg ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | umgrpredgv | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 4 | 3 | simpld | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 5 | eqid | ⊢ 𝑁 = 𝑁 | |
| 6 | 2 | umgredgne | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑁 ≠ 𝑁 ) |
| 7 | eqneqall | ⊢ ( 𝑁 = 𝑁 → ( 𝑁 ≠ 𝑁 → ¬ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) | |
| 8 | 5 6 7 | mpsyl | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ¬ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 9 | 4 8 | pm2.65da | ⊢ ( 𝐺 ∈ UMGraph → ¬ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) |
| 10 | df-nel | ⊢ ( { 𝑁 , 𝑁 } ∉ ( Edg ‘ 𝐺 ) ↔ ¬ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝐺 ∈ UMGraph → { 𝑁 , 𝑁 } ∉ ( Edg ‘ 𝐺 ) ) |