This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A multigraph has no loops. (Contributed by AV, 27-Oct-2020) (Revised by AV, 30-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrnloop2 | |- ( G e. UMGraph -> { N , N } e/ ( Edg ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 3 | 1 2 | umgrpredgv | |- ( ( G e. UMGraph /\ { N , N } e. ( Edg ` G ) ) -> ( N e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
| 4 | 3 | simpld | |- ( ( G e. UMGraph /\ { N , N } e. ( Edg ` G ) ) -> N e. ( Vtx ` G ) ) |
| 5 | eqid | |- N = N |
|
| 6 | 2 | umgredgne | |- ( ( G e. UMGraph /\ { N , N } e. ( Edg ` G ) ) -> N =/= N ) |
| 7 | eqneqall | |- ( N = N -> ( N =/= N -> -. N e. ( Vtx ` G ) ) ) |
|
| 8 | 5 6 7 | mpsyl | |- ( ( G e. UMGraph /\ { N , N } e. ( Edg ` G ) ) -> -. N e. ( Vtx ` G ) ) |
| 9 | 4 8 | pm2.65da | |- ( G e. UMGraph -> -. { N , N } e. ( Edg ` G ) ) |
| 10 | df-nel | |- ( { N , N } e/ ( Edg ` G ) <-> -. { N , N } e. ( Edg ` G ) ) |
|
| 11 | 9 10 | sylibr | |- ( G e. UMGraph -> { N , N } e/ ( Edg ` G ) ) |