This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020) (Revised by AV, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgredgnlp.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| Assertion | umgredgnlp | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ¬ ∃ 𝑣 𝐶 = { 𝑣 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgredgnlp.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | vex | ⊢ 𝑣 ∈ V | |
| 3 | hashsng | ⊢ ( 𝑣 ∈ V → ( ♯ ‘ { 𝑣 } ) = 1 ) | |
| 4 | 1ne2 | ⊢ 1 ≠ 2 | |
| 5 | 4 | neii | ⊢ ¬ 1 = 2 |
| 6 | eqeq1 | ⊢ ( ( ♯ ‘ { 𝑣 } ) = 1 → ( ( ♯ ‘ { 𝑣 } ) = 2 ↔ 1 = 2 ) ) | |
| 7 | 5 6 | mtbiri | ⊢ ( ( ♯ ‘ { 𝑣 } ) = 1 → ¬ ( ♯ ‘ { 𝑣 } ) = 2 ) |
| 8 | 2 3 7 | mp2b | ⊢ ¬ ( ♯ ‘ { 𝑣 } ) = 2 |
| 9 | fveqeq2 | ⊢ ( 𝐶 = { 𝑣 } → ( ( ♯ ‘ 𝐶 ) = 2 ↔ ( ♯ ‘ { 𝑣 } ) = 2 ) ) | |
| 10 | 8 9 | mtbiri | ⊢ ( 𝐶 = { 𝑣 } → ¬ ( ♯ ‘ 𝐶 ) = 2 ) |
| 11 | 10 | intnand | ⊢ ( 𝐶 = { 𝑣 } → ¬ ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 12 | 1 | eleq2i | ⊢ ( 𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) |
| 13 | edgumgr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) | |
| 14 | 12 13 | sylan2b | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 15 | 11 14 | nsyl3 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ¬ 𝐶 = { 𝑣 } ) |
| 16 | 15 | nexdv | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ¬ ∃ 𝑣 𝐶 = { 𝑣 } ) |