This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for umgrislfupgr and usgrislfuspgr . (Contributed by AV, 27-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrislfupgrlem | ⊢ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pos | ⊢ 0 < 2 | |
| 2 | simprl | ⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝒫 𝑉 ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) | |
| 4 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 6 | 5 | breq2d | ⊢ ( 𝑥 = ∅ → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ 0 ) ) |
| 7 | 2re | ⊢ 2 ∈ ℝ | |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | 7 8 | lenlti | ⊢ ( 2 ≤ 0 ↔ ¬ 0 < 2 ) |
| 10 | pm2.21 | ⊢ ( ¬ 0 < 2 → ( 0 < 2 → 𝑥 ≠ ∅ ) ) | |
| 11 | 9 10 | sylbi | ⊢ ( 2 ≤ 0 → ( 0 < 2 → 𝑥 ≠ ∅ ) ) |
| 12 | 6 11 | biimtrdi | ⊢ ( 𝑥 = ∅ → ( 2 ≤ ( ♯ ‘ 𝑥 ) → ( 0 < 2 → 𝑥 ≠ ∅ ) ) ) |
| 13 | 12 | adantld | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( 0 < 2 → 𝑥 ≠ ∅ ) ) ) |
| 14 | 13 | impcomd | ⊢ ( 𝑥 = ∅ → ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ≠ ∅ ) ) |
| 15 | ax-1 | ⊢ ( 𝑥 ≠ ∅ → ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ≠ ∅ ) ) | |
| 16 | 14 15 | pm2.61ine | ⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ≠ ∅ ) |
| 17 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝑉 ∧ 𝑥 ≠ ∅ ) ) | |
| 18 | 2 16 17 | sylanbrc | ⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 19 | simprr | ⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( ♯ ‘ 𝑥 ) ) | |
| 20 | 18 19 | jca | ⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
| 21 | 20 | ex | ⊢ ( 0 < 2 → ( ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) ) |
| 22 | eldifi | ⊢ ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → 𝑥 ∈ 𝒫 𝑉 ) | |
| 23 | 22 | anim1i | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
| 24 | 21 23 | impbid1 | ⊢ ( 0 < 2 → ( ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) ) |
| 25 | 24 | rabbidva2 | ⊢ ( 0 < 2 → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 26 | 1 25 | ax-mp | ⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
| 27 | 26 | ineq2i | ⊢ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 28 | inrab | ⊢ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) } | |
| 29 | hashxnn0 | ⊢ ( 𝑥 ∈ V → ( ♯ ‘ 𝑥 ) ∈ ℕ0* ) | |
| 30 | 29 | elv | ⊢ ( ♯ ‘ 𝑥 ) ∈ ℕ0* |
| 31 | xnn0xr | ⊢ ( ( ♯ ‘ 𝑥 ) ∈ ℕ0* → ( ♯ ‘ 𝑥 ) ∈ ℝ* ) | |
| 32 | 30 31 | ax-mp | ⊢ ( ♯ ‘ 𝑥 ) ∈ ℝ* |
| 33 | 7 | rexri | ⊢ 2 ∈ ℝ* |
| 34 | xrletri3 | ⊢ ( ( ( ♯ ‘ 𝑥 ) ∈ ℝ* ∧ 2 ∈ ℝ* ) → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) ) | |
| 35 | 32 33 34 | mp2an | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
| 36 | 35 | bicomi | ⊢ ( ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ 𝑥 ) = 2 ) |
| 37 | 36 | rabbii | ⊢ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
| 38 | 27 28 37 | 3eqtri | ⊢ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |