This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for umgrislfupgr and usgrislfuspgr . (Contributed by AV, 27-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrislfupgrlem | |- ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ~P V | 2 <_ ( # ` x ) } ) = { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pos | |- 0 < 2 |
|
| 2 | simprl | |- ( ( 0 < 2 /\ ( x e. ~P V /\ 2 <_ ( # ` x ) ) ) -> x e. ~P V ) |
|
| 3 | fveq2 | |- ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) |
|
| 4 | hash0 | |- ( # ` (/) ) = 0 |
|
| 5 | 3 4 | eqtrdi | |- ( x = (/) -> ( # ` x ) = 0 ) |
| 6 | 5 | breq2d | |- ( x = (/) -> ( 2 <_ ( # ` x ) <-> 2 <_ 0 ) ) |
| 7 | 2re | |- 2 e. RR |
|
| 8 | 0re | |- 0 e. RR |
|
| 9 | 7 8 | lenlti | |- ( 2 <_ 0 <-> -. 0 < 2 ) |
| 10 | pm2.21 | |- ( -. 0 < 2 -> ( 0 < 2 -> x =/= (/) ) ) |
|
| 11 | 9 10 | sylbi | |- ( 2 <_ 0 -> ( 0 < 2 -> x =/= (/) ) ) |
| 12 | 6 11 | biimtrdi | |- ( x = (/) -> ( 2 <_ ( # ` x ) -> ( 0 < 2 -> x =/= (/) ) ) ) |
| 13 | 12 | adantld | |- ( x = (/) -> ( ( x e. ~P V /\ 2 <_ ( # ` x ) ) -> ( 0 < 2 -> x =/= (/) ) ) ) |
| 14 | 13 | impcomd | |- ( x = (/) -> ( ( 0 < 2 /\ ( x e. ~P V /\ 2 <_ ( # ` x ) ) ) -> x =/= (/) ) ) |
| 15 | ax-1 | |- ( x =/= (/) -> ( ( 0 < 2 /\ ( x e. ~P V /\ 2 <_ ( # ` x ) ) ) -> x =/= (/) ) ) |
|
| 16 | 14 15 | pm2.61ine | |- ( ( 0 < 2 /\ ( x e. ~P V /\ 2 <_ ( # ` x ) ) ) -> x =/= (/) ) |
| 17 | eldifsn | |- ( x e. ( ~P V \ { (/) } ) <-> ( x e. ~P V /\ x =/= (/) ) ) |
|
| 18 | 2 16 17 | sylanbrc | |- ( ( 0 < 2 /\ ( x e. ~P V /\ 2 <_ ( # ` x ) ) ) -> x e. ( ~P V \ { (/) } ) ) |
| 19 | simprr | |- ( ( 0 < 2 /\ ( x e. ~P V /\ 2 <_ ( # ` x ) ) ) -> 2 <_ ( # ` x ) ) |
|
| 20 | 18 19 | jca | |- ( ( 0 < 2 /\ ( x e. ~P V /\ 2 <_ ( # ` x ) ) ) -> ( x e. ( ~P V \ { (/) } ) /\ 2 <_ ( # ` x ) ) ) |
| 21 | 20 | ex | |- ( 0 < 2 -> ( ( x e. ~P V /\ 2 <_ ( # ` x ) ) -> ( x e. ( ~P V \ { (/) } ) /\ 2 <_ ( # ` x ) ) ) ) |
| 22 | eldifi | |- ( x e. ( ~P V \ { (/) } ) -> x e. ~P V ) |
|
| 23 | 22 | anim1i | |- ( ( x e. ( ~P V \ { (/) } ) /\ 2 <_ ( # ` x ) ) -> ( x e. ~P V /\ 2 <_ ( # ` x ) ) ) |
| 24 | 21 23 | impbid1 | |- ( 0 < 2 -> ( ( x e. ~P V /\ 2 <_ ( # ` x ) ) <-> ( x e. ( ~P V \ { (/) } ) /\ 2 <_ ( # ` x ) ) ) ) |
| 25 | 24 | rabbidva2 | |- ( 0 < 2 -> { x e. ~P V | 2 <_ ( # ` x ) } = { x e. ( ~P V \ { (/) } ) | 2 <_ ( # ` x ) } ) |
| 26 | 1 25 | ax-mp | |- { x e. ~P V | 2 <_ ( # ` x ) } = { x e. ( ~P V \ { (/) } ) | 2 <_ ( # ` x ) } |
| 27 | 26 | ineq2i | |- ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ~P V | 2 <_ ( # ` x ) } ) = ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ( ~P V \ { (/) } ) | 2 <_ ( # ` x ) } ) |
| 28 | inrab | |- ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ( ~P V \ { (/) } ) | 2 <_ ( # ` x ) } ) = { x e. ( ~P V \ { (/) } ) | ( ( # ` x ) <_ 2 /\ 2 <_ ( # ` x ) ) } |
|
| 29 | hashxnn0 | |- ( x e. _V -> ( # ` x ) e. NN0* ) |
|
| 30 | 29 | elv | |- ( # ` x ) e. NN0* |
| 31 | xnn0xr | |- ( ( # ` x ) e. NN0* -> ( # ` x ) e. RR* ) |
|
| 32 | 30 31 | ax-mp | |- ( # ` x ) e. RR* |
| 33 | 7 | rexri | |- 2 e. RR* |
| 34 | xrletri3 | |- ( ( ( # ` x ) e. RR* /\ 2 e. RR* ) -> ( ( # ` x ) = 2 <-> ( ( # ` x ) <_ 2 /\ 2 <_ ( # ` x ) ) ) ) |
|
| 35 | 32 33 34 | mp2an | |- ( ( # ` x ) = 2 <-> ( ( # ` x ) <_ 2 /\ 2 <_ ( # ` x ) ) ) |
| 36 | 35 | bicomi | |- ( ( ( # ` x ) <_ 2 /\ 2 <_ ( # ` x ) ) <-> ( # ` x ) = 2 ) |
| 37 | 36 | rabbii | |- { x e. ( ~P V \ { (/) } ) | ( ( # ` x ) <_ 2 /\ 2 <_ ( # ` x ) ) } = { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } |
| 38 | 27 28 37 | 3eqtri | |- ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ~P V | 2 <_ ( # ` x ) } ) = { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } |