This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either M or N could be proper classes ( ( EX ) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | umgrnloopv.e | ||
| umgredgprv.v | |||
| Assertion | umgredgprv |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrnloopv.e | ||
| 2 | umgredgprv.v | ||
| 3 | umgruhgr | ||
| 4 | 2 1 | uhgrss | |
| 5 | 3 4 | sylan | |
| 6 | 2 1 | umgredg2 | |
| 7 | sseq1 | ||
| 8 | fveqeq2 | ||
| 9 | 7 8 | anbi12d | |
| 10 | eqid | ||
| 11 | 10 | hashprdifel | |
| 12 | prssg | ||
| 13 | 12 | 3adant3 | |
| 14 | 13 | biimprd | |
| 15 | 11 14 | syl | |
| 16 | 15 | impcom | |
| 17 | 9 16 | biimtrdi | |
| 18 | 17 | com12 | |
| 19 | 5 6 18 | syl2anc |