This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgr2edg1 . Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 9-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgrvad2edg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| Assertion | umgr2edgneu | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ∃! 𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrvad2edg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | 1 | umgrvad2edg | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐸 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) ) |
| 3 | 3simpc | ⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) ) | |
| 4 | neneq | ⊢ ( 𝑥 ≠ 𝑦 → ¬ 𝑥 = 𝑦 ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → ¬ 𝑥 = 𝑦 ) |
| 6 | 3 5 | jca | ⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 7 | 6 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝐸 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → ∃ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 8 | 7 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐸 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 9 | 2 8 | syl | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 10 | rexanali | ⊢ ( ∃ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 11 | 10 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐸 ¬ ∀ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 12 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐸 ¬ ∀ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 14 | 9 13 | sylib | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 15 | 14 | intnand | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ( ∃ 𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 16 | eleq2w | ⊢ ( 𝑥 = 𝑦 → ( 𝑁 ∈ 𝑥 ↔ 𝑁 ∈ 𝑦 ) ) | |
| 17 | 16 | reu4 | ⊢ ( ∃! 𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ↔ ( ∃ 𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 18 | 15 17 | sylnibr | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ∃! 𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ) |