This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, the size of the edge function is the number of the edges of the graph. (Contributed by AV, 4-Jan-2020) (Revised by AV, 7-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgrsizedg | ⊢ ( 𝐺 ∈ USGraph → ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) = ( ♯ ‘ ( Edg ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 2 | 1 | dmex | ⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 3 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | 3 4 | usgrf | ⊢ ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 6 | hashf1rn | ⊢ ( ( dom ( iEdg ‘ 𝐺 ) ∈ V ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) = ( ♯ ‘ ran ( iEdg ‘ 𝐺 ) ) ) | |
| 7 | 2 5 6 | sylancr | ⊢ ( 𝐺 ∈ USGraph → ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) = ( ♯ ‘ ran ( iEdg ‘ 𝐺 ) ) ) |
| 8 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 9 | 8 | a1i | ⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐺 ∈ USGraph → ( ♯ ‘ ( Edg ‘ 𝐺 ) ) = ( ♯ ‘ ran ( iEdg ‘ 𝐺 ) ) ) |
| 11 | 7 10 | eqtr4d | ⊢ ( 𝐺 ∈ USGraph → ( ♯ ‘ ( iEdg ‘ 𝐺 ) ) = ( ♯ ‘ ( Edg ‘ 𝐺 ) ) ) |