This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a subgraph: If S is a subgraph of G , its vertices are also vertices of G , and its edges are also edges of G . (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgrprop3.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| subgrprop3.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | ||
| subgrprop3.e | ⊢ 𝐸 = ( Edg ‘ 𝑆 ) | ||
| subgrprop3.b | ⊢ 𝐵 = ( Edg ‘ 𝐺 ) | ||
| Assertion | subgrprop3 | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐸 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrprop3.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| 2 | subgrprop3.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | |
| 3 | subgrprop3.e | ⊢ 𝐸 = ( Edg ‘ 𝑆 ) | |
| 4 | subgrprop3.b | ⊢ 𝐵 = ( Edg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 7 | 1 2 5 6 3 | subgrprop2 | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) |
| 8 | 3simpa | ⊢ ( ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) → ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) |
| 10 | simprl | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → 𝑉 ⊆ 𝐴 ) | |
| 11 | rnss | ⊢ ( ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) → ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) | |
| 12 | 11 | ad2antll | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) |
| 13 | subgrv | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) | |
| 14 | edgval | ⊢ ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) | |
| 15 | 14 | a1i | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) ) |
| 16 | 3 15 | eqtrid | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → 𝐸 = ran ( iEdg ‘ 𝑆 ) ) |
| 17 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 18 | 17 | a1i | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 19 | 4 18 | eqtrid | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → 𝐵 = ran ( iEdg ‘ 𝐺 ) ) |
| 20 | 16 19 | sseq12d | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐸 ⊆ 𝐵 ↔ ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) ) |
| 21 | 13 20 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝐸 ⊆ 𝐵 ↔ ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → ( 𝐸 ⊆ 𝐵 ↔ ran ( iEdg ‘ 𝑆 ) ⊆ ran ( iEdg ‘ 𝐺 ) ) ) |
| 23 | 12 22 | mpbird | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → 𝐸 ⊆ 𝐵 ) |
| 24 | 10 23 | jca | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ ( 𝑉 ⊆ 𝐴 ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) → ( 𝑉 ⊆ 𝐴 ∧ 𝐸 ⊆ 𝐵 ) ) |
| 25 | 9 24 | mpdan | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐸 ⊆ 𝐵 ) ) |