This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgr0 | ⊢ ∅ ∈ UHGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 | ⊢ ∅ : ∅ ⟶ ∅ | |
| 2 | dm0 | ⊢ dom ∅ = ∅ | |
| 3 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 4 | 3 | difeq1i | ⊢ ( 𝒫 ∅ ∖ { ∅ } ) = ( { ∅ } ∖ { ∅ } ) |
| 5 | difid | ⊢ ( { ∅ } ∖ { ∅ } ) = ∅ | |
| 6 | 4 5 | eqtri | ⊢ ( 𝒫 ∅ ∖ { ∅ } ) = ∅ |
| 7 | 2 6 | feq23i | ⊢ ( ∅ : dom ∅ ⟶ ( 𝒫 ∅ ∖ { ∅ } ) ↔ ∅ : ∅ ⟶ ∅ ) |
| 8 | 1 7 | mpbir | ⊢ ∅ : dom ∅ ⟶ ( 𝒫 ∅ ∖ { ∅ } ) |
| 9 | 0ex | ⊢ ∅ ∈ V | |
| 10 | vtxval0 | ⊢ ( Vtx ‘ ∅ ) = ∅ | |
| 11 | 10 | eqcomi | ⊢ ∅ = ( Vtx ‘ ∅ ) |
| 12 | iedgval0 | ⊢ ( iEdg ‘ ∅ ) = ∅ | |
| 13 | 12 | eqcomi | ⊢ ∅ = ( iEdg ‘ ∅ ) |
| 14 | 11 13 | isuhgr | ⊢ ( ∅ ∈ V → ( ∅ ∈ UHGraph ↔ ∅ : dom ∅ ⟶ ( 𝒫 ∅ ∖ { ∅ } ) ) ) |
| 15 | 9 14 | ax-mp | ⊢ ( ∅ ∈ UHGraph ↔ ∅ : dom ∅ ⟶ ( 𝒫 ∅ ∖ { ∅ } ) ) |
| 16 | 8 15 | mpbir | ⊢ ∅ ∈ UHGraph |