This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgr0e.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| uhgr0e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ∅ ) | ||
| Assertion | uhgr0e | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgr0e.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 2 | uhgr0e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ∅ ) | |
| 3 | f0 | ⊢ ∅ : ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) | |
| 4 | dm0 | ⊢ dom ∅ = ∅ | |
| 5 | 4 | feq2i | ⊢ ( ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ∅ : ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 6 | 3 5 | mpbir | ⊢ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) |
| 7 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 9 | 7 8 | isuhgr | ⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 11 | id | ⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → ( iEdg ‘ 𝐺 ) = ∅ ) | |
| 12 | dmeq | ⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → dom ( iEdg ‘ 𝐺 ) = dom ∅ ) | |
| 13 | 11 12 | feq12d | ⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 14 | 2 13 | syl | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 15 | 10 14 | bitrd | ⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ↔ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 16 | 6 15 | mpbiri | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |