This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 9-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgr0vb | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | uhgrf | |- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 4 | pweq | |- ( ( Vtx ` G ) = (/) -> ~P ( Vtx ` G ) = ~P (/) ) |
|
| 5 | 4 | difeq1d | |- ( ( Vtx ` G ) = (/) -> ( ~P ( Vtx ` G ) \ { (/) } ) = ( ~P (/) \ { (/) } ) ) |
| 6 | pw0 | |- ~P (/) = { (/) } |
|
| 7 | 6 | difeq1i | |- ( ~P (/) \ { (/) } ) = ( { (/) } \ { (/) } ) |
| 8 | difid | |- ( { (/) } \ { (/) } ) = (/) |
|
| 9 | 7 8 | eqtri | |- ( ~P (/) \ { (/) } ) = (/) |
| 10 | 5 9 | eqtrdi | |- ( ( Vtx ` G ) = (/) -> ( ~P ( Vtx ` G ) \ { (/) } ) = (/) ) |
| 11 | 10 | adantl | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( ~P ( Vtx ` G ) \ { (/) } ) = (/) ) |
| 12 | 11 | feq3d | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) ) ) |
| 13 | f00 | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) <-> ( ( iEdg ` G ) = (/) /\ dom ( iEdg ` G ) = (/) ) ) |
|
| 14 | 13 | simplbi | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) -> ( iEdg ` G ) = (/) ) |
| 15 | 12 14 | biimtrdi | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) -> ( iEdg ` G ) = (/) ) ) |
| 16 | 3 15 | syl5 | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) |
| 17 | simpl | |- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G e. W ) |
|
| 18 | simpr | |- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
|
| 19 | 17 18 | uhgr0e | |- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G e. UHGraph ) |
| 20 | 19 | ex | |- ( G e. W -> ( ( iEdg ` G ) = (/) -> G e. UHGraph ) ) |
| 21 | 20 | adantr | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( ( iEdg ` G ) = (/) -> G e. UHGraph ) ) |
| 22 | 16 21 | impbid | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) |