This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union U of two (undirected) hypergraphs G and H with the same vertex set V is a hypergraph with the vertex set V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| uhgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) | ||
| uhgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| uhgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | ||
| uhgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| uhgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | ||
| uhgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | ||
| uhgrun.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | ||
| uhgrun.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | ||
| uhgrun.un | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) | ||
| Assertion | uhgrun | ⊢ ( 𝜑 → 𝑈 ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| 2 | uhgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) | |
| 3 | uhgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 4 | uhgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | |
| 5 | uhgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 6 | uhgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | |
| 7 | uhgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | |
| 8 | uhgrun.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | |
| 9 | uhgrun.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | |
| 10 | uhgrun.un | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) | |
| 11 | 5 3 | uhgrf | ⊢ ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 13 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 14 | 13 4 | uhgrf | ⊢ ( 𝐻 ∈ UHGraph → 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) |
| 16 | 6 | eqcomd | ⊢ ( 𝜑 → 𝑉 = ( Vtx ‘ 𝐻 ) ) |
| 17 | 16 | pweqd | ⊢ ( 𝜑 → 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐻 ) ) |
| 18 | 17 | difeq1d | ⊢ ( 𝜑 → ( 𝒫 𝑉 ∖ { ∅ } ) = ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) |
| 19 | 18 | feq3d | ⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) ) |
| 20 | 15 19 | mpbird | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 21 | 12 20 7 | fun2d | ⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 22 | 10 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐸 ∪ 𝐹 ) ) |
| 23 | dmun | ⊢ dom ( 𝐸 ∪ 𝐹 ) = ( dom 𝐸 ∪ dom 𝐹 ) | |
| 24 | 22 23 | eqtrdi | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐸 ∪ dom 𝐹 ) ) |
| 25 | 9 | pweqd | ⊢ ( 𝜑 → 𝒫 ( Vtx ‘ 𝑈 ) = 𝒫 𝑉 ) |
| 26 | 25 | difeq1d | ⊢ ( 𝜑 → ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 27 | 10 24 26 | feq123d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ↔ ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
| 28 | 21 27 | mpbird | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ) |
| 29 | eqid | ⊢ ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 ) | |
| 30 | eqid | ⊢ ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 ) | |
| 31 | 29 30 | isuhgr | ⊢ ( 𝑈 ∈ 𝑊 → ( 𝑈 ∈ UHGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ) ) |
| 32 | 8 31 | syl | ⊢ ( 𝜑 → ( 𝑈 ∈ UHGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ) ) |
| 33 | 28 32 | mpbird | ⊢ ( 𝜑 → 𝑈 ∈ UHGraph ) |