This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilss | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝑋 ∈ dom UFil ) | |
| 2 | elpw2g | ⊢ ( 𝑋 ∈ dom UFil → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 4 | isufil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) ) | |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝑆 → ( 𝑥 ∈ 𝐹 ↔ 𝑆 ∈ 𝐹 ) ) | |
| 6 | difeq2 | ⊢ ( 𝑥 = 𝑆 → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑆 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑥 = 𝑆 → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |
| 8 | 5 7 | orbi12d | ⊢ ( 𝑥 = 𝑆 → ( ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ↔ ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) ) |
| 9 | 8 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) → ( 𝑆 ∈ 𝒫 𝑋 → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) ) |
| 10 | 4 9 | simplbiim | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) ) |
| 11 | 3 10 | sylbird | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑆 ⊆ 𝑋 → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |