This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilss | |- ( ( F e. ( UFil ` X ) /\ S C_ X ) -> ( S e. F \/ ( X \ S ) e. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | |- ( F e. ( UFil ` X ) -> X e. dom UFil ) |
|
| 2 | elpw2g | |- ( X e. dom UFil -> ( S e. ~P X <-> S C_ X ) ) |
|
| 3 | 1 2 | syl | |- ( F e. ( UFil ` X ) -> ( S e. ~P X <-> S C_ X ) ) |
| 4 | isufil | |- ( F e. ( UFil ` X ) <-> ( F e. ( Fil ` X ) /\ A. x e. ~P X ( x e. F \/ ( X \ x ) e. F ) ) ) |
|
| 5 | eleq1 | |- ( x = S -> ( x e. F <-> S e. F ) ) |
|
| 6 | difeq2 | |- ( x = S -> ( X \ x ) = ( X \ S ) ) |
|
| 7 | 6 | eleq1d | |- ( x = S -> ( ( X \ x ) e. F <-> ( X \ S ) e. F ) ) |
| 8 | 5 7 | orbi12d | |- ( x = S -> ( ( x e. F \/ ( X \ x ) e. F ) <-> ( S e. F \/ ( X \ S ) e. F ) ) ) |
| 9 | 8 | rspccv | |- ( A. x e. ~P X ( x e. F \/ ( X \ x ) e. F ) -> ( S e. ~P X -> ( S e. F \/ ( X \ S ) e. F ) ) ) |
| 10 | 4 9 | simplbiim | |- ( F e. ( UFil ` X ) -> ( S e. ~P X -> ( S e. F \/ ( X \ S ) e. F ) ) ) |
| 11 | 3 10 | sylbird | |- ( F e. ( UFil ` X ) -> ( S C_ X -> ( S e. F \/ ( X \ S ) e. F ) ) ) |
| 12 | 11 | imp | |- ( ( F e. ( UFil ` X ) /\ S C_ X ) -> ( S e. F \/ ( X \ S ) e. F ) ) |