This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilss |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ||
| 2 | elpw2g | ||
| 3 | 1 2 | syl | |
| 4 | isufil | ||
| 5 | eleq1 | ||
| 6 | difeq2 | ||
| 7 | 6 | eleq1d | |
| 8 | 5 7 | orbi12d | |
| 9 | 8 | rspccv | |
| 10 | 4 9 | simplbiim | |
| 11 | 3 10 | sylbird | |
| 12 | 11 | imp |