This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufildom1 | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ≼ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( ∩ 𝐹 = ∅ → ( ∩ 𝐹 ≼ 1o ↔ ∅ ≼ 1o ) ) | |
| 2 | uffixsn | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → { 𝑥 } ∈ 𝐹 ) | |
| 3 | intss1 | ⊢ ( { 𝑥 } ∈ 𝐹 → ∩ 𝐹 ⊆ { 𝑥 } ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → ∩ 𝐹 ⊆ { 𝑥 } ) |
| 5 | simpr | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → 𝑥 ∈ ∩ 𝐹 ) | |
| 6 | 5 | snssd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → { 𝑥 } ⊆ ∩ 𝐹 ) |
| 7 | 4 6 | eqssd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → ∩ 𝐹 = { 𝑥 } ) |
| 8 | 7 | ex | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 → ∩ 𝐹 = { 𝑥 } ) ) |
| 9 | 8 | eximdv | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 ∈ ∩ 𝐹 → ∃ 𝑥 ∩ 𝐹 = { 𝑥 } ) ) |
| 10 | n0 | ⊢ ( ∩ 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ∩ 𝐹 ) | |
| 11 | en1 | ⊢ ( ∩ 𝐹 ≈ 1o ↔ ∃ 𝑥 ∩ 𝐹 = { 𝑥 } ) | |
| 12 | 9 10 11 | 3imtr4g | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 ≠ ∅ → ∩ 𝐹 ≈ 1o ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≈ 1o ) |
| 14 | endom | ⊢ ( ∩ 𝐹 ≈ 1o → ∩ 𝐹 ≼ 1o ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≼ 1o ) |
| 16 | 1on | ⊢ 1o ∈ On | |
| 17 | 0domg | ⊢ ( 1o ∈ On → ∅ ≼ 1o ) | |
| 18 | 16 17 | mp1i | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∅ ≼ 1o ) |
| 19 | 1 15 18 | pm2.61ne | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ≼ 1o ) |