This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufildom1 | |- ( F e. ( UFil ` X ) -> |^| F ~<_ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( |^| F = (/) -> ( |^| F ~<_ 1o <-> (/) ~<_ 1o ) ) |
|
| 2 | uffixsn | |- ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> { x } e. F ) |
|
| 3 | intss1 | |- ( { x } e. F -> |^| F C_ { x } ) |
|
| 4 | 2 3 | syl | |- ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> |^| F C_ { x } ) |
| 5 | simpr | |- ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> x e. |^| F ) |
|
| 6 | 5 | snssd | |- ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> { x } C_ |^| F ) |
| 7 | 4 6 | eqssd | |- ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> |^| F = { x } ) |
| 8 | 7 | ex | |- ( F e. ( UFil ` X ) -> ( x e. |^| F -> |^| F = { x } ) ) |
| 9 | 8 | eximdv | |- ( F e. ( UFil ` X ) -> ( E. x x e. |^| F -> E. x |^| F = { x } ) ) |
| 10 | n0 | |- ( |^| F =/= (/) <-> E. x x e. |^| F ) |
|
| 11 | en1 | |- ( |^| F ~~ 1o <-> E. x |^| F = { x } ) |
|
| 12 | 9 10 11 | 3imtr4g | |- ( F e. ( UFil ` X ) -> ( |^| F =/= (/) -> |^| F ~~ 1o ) ) |
| 13 | 12 | imp | |- ( ( F e. ( UFil ` X ) /\ |^| F =/= (/) ) -> |^| F ~~ 1o ) |
| 14 | endom | |- ( |^| F ~~ 1o -> |^| F ~<_ 1o ) |
|
| 15 | 13 14 | syl | |- ( ( F e. ( UFil ` X ) /\ |^| F =/= (/) ) -> |^| F ~<_ 1o ) |
| 16 | 1on | |- 1o e. On |
|
| 17 | 0domg | |- ( 1o e. On -> (/) ~<_ 1o ) |
|
| 18 | 16 17 | mp1i | |- ( F e. ( UFil ` X ) -> (/) ~<_ 1o ) |
| 19 | 1 15 18 | pm2.61ne | |- ( F e. ( UFil ` X ) -> |^| F ~<_ 1o ) |