This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013) (Revised by Mario Carneiro, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilb | |- ( ( F e. ( UFil ` X ) /\ S C_ X ) -> ( -. S e. F <-> ( X \ S ) e. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilss | |- ( ( F e. ( UFil ` X ) /\ S C_ X ) -> ( S e. F \/ ( X \ S ) e. F ) ) |
|
| 2 | 1 | ord | |- ( ( F e. ( UFil ` X ) /\ S C_ X ) -> ( -. S e. F -> ( X \ S ) e. F ) ) |
| 3 | ufilfil | |- ( F e. ( UFil ` X ) -> F e. ( Fil ` X ) ) |
|
| 4 | filfbas | |- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
|
| 5 | fbncp | |- ( ( F e. ( fBas ` X ) /\ S e. F ) -> -. ( X \ S ) e. F ) |
|
| 6 | 5 | ex | |- ( F e. ( fBas ` X ) -> ( S e. F -> -. ( X \ S ) e. F ) ) |
| 7 | 6 | con2d | |- ( F e. ( fBas ` X ) -> ( ( X \ S ) e. F -> -. S e. F ) ) |
| 8 | 3 4 7 | 3syl | |- ( F e. ( UFil ` X ) -> ( ( X \ S ) e. F -> -. S e. F ) ) |
| 9 | 8 | adantr | |- ( ( F e. ( UFil ` X ) /\ S C_ X ) -> ( ( X \ S ) e. F -> -. S e. F ) ) |
| 10 | 2 9 | impbid | |- ( ( F e. ( UFil ` X ) /\ S C_ X ) -> ( -. S e. F <-> ( X \ S ) e. F ) ) |