This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value when F is not a function. Theorem 6.12(2) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by Mario Carneiro, 31-Aug-2015) Avoid ax-10 , ax-11 , ax-12 . (Revised by TM, 25-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tz6.12-2 | ⊢ ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) | |
| 2 | eu6im | ⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝐴 𝐹 𝑥 ↔ 𝑥 = 𝑧 ) → ∃! 𝑥 𝐴 𝐹 𝑥 ) | |
| 3 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 𝐹 𝑦 ↔ 𝐴 𝐹 𝑥 ) ) | |
| 4 | 3 | eqabcbw | ⊢ ( { 𝑦 ∣ 𝐴 𝐹 𝑦 } = { 𝑧 } ↔ ∀ 𝑥 ( 𝐴 𝐹 𝑥 ↔ 𝑥 ∈ { 𝑧 } ) ) |
| 5 | velsn | ⊢ ( 𝑥 ∈ { 𝑧 } ↔ 𝑥 = 𝑧 ) | |
| 6 | 5 | bibi2i | ⊢ ( ( 𝐴 𝐹 𝑥 ↔ 𝑥 ∈ { 𝑧 } ) ↔ ( 𝐴 𝐹 𝑥 ↔ 𝑥 = 𝑧 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝐴 𝐹 𝑥 ↔ 𝑥 ∈ { 𝑧 } ) ↔ ∀ 𝑥 ( 𝐴 𝐹 𝑥 ↔ 𝑥 = 𝑧 ) ) |
| 8 | 4 7 | bitri | ⊢ ( { 𝑦 ∣ 𝐴 𝐹 𝑦 } = { 𝑧 } ↔ ∀ 𝑥 ( 𝐴 𝐹 𝑥 ↔ 𝑥 = 𝑧 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑧 { 𝑦 ∣ 𝐴 𝐹 𝑦 } = { 𝑧 } ↔ ∃ 𝑧 ∀ 𝑥 ( 𝐴 𝐹 𝑥 ↔ 𝑥 = 𝑧 ) ) |
| 10 | iotanul2 | ⊢ ( ¬ ∃ 𝑧 { 𝑦 ∣ 𝐴 𝐹 𝑦 } = { 𝑧 } → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = ∅ ) | |
| 11 | 9 10 | sylnbir | ⊢ ( ¬ ∃ 𝑧 ∀ 𝑥 ( 𝐴 𝐹 𝑥 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = ∅ ) |
| 12 | 2 11 | nsyl5 | ⊢ ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = ∅ ) |
| 13 | 1 12 | eqtrid | ⊢ ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |