This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value when F is not a function. Theorem 6.12(2) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by Mario Carneiro, 31-Aug-2015) Avoid ax-10 , ax-11 , ax-12 . (Revised by TM, 25-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tz6.12-2 | |- ( -. E! x A F x -> ( F ` A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv | |- ( F ` A ) = ( iota y A F y ) |
|
| 2 | eu6im | |- ( E. z A. x ( A F x <-> x = z ) -> E! x A F x ) |
|
| 3 | breq2 | |- ( y = x -> ( A F y <-> A F x ) ) |
|
| 4 | 3 | eqabcbw | |- ( { y | A F y } = { z } <-> A. x ( A F x <-> x e. { z } ) ) |
| 5 | velsn | |- ( x e. { z } <-> x = z ) |
|
| 6 | 5 | bibi2i | |- ( ( A F x <-> x e. { z } ) <-> ( A F x <-> x = z ) ) |
| 7 | 6 | albii | |- ( A. x ( A F x <-> x e. { z } ) <-> A. x ( A F x <-> x = z ) ) |
| 8 | 4 7 | bitri | |- ( { y | A F y } = { z } <-> A. x ( A F x <-> x = z ) ) |
| 9 | 8 | exbii | |- ( E. z { y | A F y } = { z } <-> E. z A. x ( A F x <-> x = z ) ) |
| 10 | iotanul2 | |- ( -. E. z { y | A F y } = { z } -> ( iota y A F y ) = (/) ) |
|
| 11 | 9 10 | sylnbir | |- ( -. E. z A. x ( A F x <-> x = z ) -> ( iota y A F y ) = (/) ) |
| 12 | 2 11 | nsyl5 | |- ( -. E! x A F x -> ( iota y A F y ) = (/) ) |
| 13 | 1 12 | eqtrid | |- ( -. E! x A F x -> ( F ` A ) = (/) ) |