This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a homeomorphism from X X. Y to Y X. X . (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txswaphmeo | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Homeo ( 𝐾 ×t 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | 1 2 | cnmpt2nd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
| 4 | 1 2 | cnmpt1st | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 5 | 1 2 3 4 | cnmpt2t | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐾 ×t 𝐽 ) ) ) |
| 6 | opelxpi | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑦 , 𝑥 〉 ∈ ( 𝑌 × 𝑋 ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 〈 𝑦 , 𝑥 〉 ∈ ( 𝑌 × 𝑋 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → 〈 𝑦 , 𝑥 〉 ∈ ( 𝑌 × 𝑋 ) ) |
| 9 | 8 | ralrimivva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 〈 𝑦 , 𝑥 〉 ∈ ( 𝑌 × 𝑋 ) ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) | |
| 11 | 10 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 〈 𝑦 , 𝑥 〉 ∈ ( 𝑌 × 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) : ( 𝑋 × 𝑌 ) ⟶ ( 𝑌 × 𝑋 ) ) |
| 12 | 9 11 | sylib | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) : ( 𝑋 × 𝑌 ) ⟶ ( 𝑌 × 𝑋 ) ) |
| 13 | opelxpi | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ) | |
| 14 | 13 | ancoms | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 16 | 15 | ralrimivva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 17 | eqid | ⊢ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) = ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) | |
| 18 | 17 | fmpo | ⊢ ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) : ( 𝑌 × 𝑋 ) ⟶ ( 𝑋 × 𝑌 ) ) |
| 19 | 16 18 | sylib | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) : ( 𝑌 × 𝑋 ) ⟶ ( 𝑋 × 𝑌 ) ) |
| 20 | txswaphmeolem | ⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ∘ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) ) = ( I ↾ ( 𝑌 × 𝑋 ) ) | |
| 21 | txswaphmeolem | ⊢ ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ) = ( I ↾ ( 𝑋 × 𝑌 ) ) | |
| 22 | fcof1o | ⊢ ( ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) : ( 𝑋 × 𝑌 ) ⟶ ( 𝑌 × 𝑋 ) ∧ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) : ( 𝑌 × 𝑋 ) ⟶ ( 𝑋 × 𝑌 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ∘ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) ) = ( I ↾ ( 𝑌 × 𝑋 ) ) ∧ ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ) = ( I ↾ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) : ( 𝑋 × 𝑌 ) –1-1-onto→ ( 𝑌 × 𝑋 ) ∧ ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) = ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) ) ) | |
| 23 | 20 21 22 | mpanr12 | ⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) : ( 𝑋 × 𝑌 ) ⟶ ( 𝑌 × 𝑋 ) ∧ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) : ( 𝑌 × 𝑋 ) ⟶ ( 𝑋 × 𝑌 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) : ( 𝑋 × 𝑌 ) –1-1-onto→ ( 𝑌 × 𝑋 ) ∧ ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) = ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) ) ) |
| 24 | 12 19 23 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) : ( 𝑋 × 𝑌 ) –1-1-onto→ ( 𝑌 × 𝑋 ) ∧ ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) = ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) ) ) |
| 25 | 24 | simprd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) = ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) ) |
| 26 | 2 1 | cnmpt2nd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 27 | 2 1 | cnmpt1st | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝑦 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐾 ) ) |
| 28 | 2 1 26 27 | cnmpt2t | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn ( 𝐽 ×t 𝐾 ) ) ) |
| 29 | 25 28 | eqeltrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn ( 𝐽 ×t 𝐾 ) ) ) |
| 30 | ishmeo | ⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Homeo ( 𝐾 ×t 𝐽 ) ) ↔ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐾 ×t 𝐽 ) ) ∧ ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn ( 𝐽 ×t 𝐾 ) ) ) ) | |
| 31 | 5 29 30 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝑦 , 𝑥 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Homeo ( 𝐾 ×t 𝐽 ) ) ) |