This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txss12 | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( 𝐴 ×t 𝐶 ) ⊆ ( 𝐵 ×t 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) | |
| 2 | 1 | txbasex | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) → ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ∈ V ) |
| 3 | resmpo | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ↾ ( 𝐴 × 𝐶 ) ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) | |
| 4 | resss | ⊢ ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ↾ ( 𝐴 × 𝐶 ) ) ⊆ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) | |
| 5 | 3 4 | eqsstrrdi | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 7 | rnss | ⊢ ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) → ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 9 | tgss | ⊢ ( ( ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ∈ V ∧ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ⊆ ( topGen ‘ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) ) | |
| 10 | 2 8 9 | syl2an2r | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ⊆ ( topGen ‘ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 11 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) | |
| 12 | ssexg | ⊢ ( ( 𝐶 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊 ) → 𝐶 ∈ V ) | |
| 13 | eqid | ⊢ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) | |
| 14 | 13 | txval | ⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 15 | 11 12 14 | syl2an | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 16 | 15 | an4s | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 17 | 16 | ancoms | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 18 | 1 | txval | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) → ( 𝐵 ×t 𝐷 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( 𝐵 ×t 𝐷 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 20 | 10 17 19 | 3sstr4d | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( 𝐴 ×t 𝐶 ) ⊆ ( 𝐵 ×t 𝐷 ) ) |