This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmspropd.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| tsmspropd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| tsmspropd.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | ||
| tsmspropd.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | ||
| tsmspropd.p | ⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) | ||
| tsmspropd.j | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐻 ) ) | ||
| Assertion | tsmspropd | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐻 tsums 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmspropd.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | tsmspropd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 3 | tsmspropd.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | |
| 4 | tsmspropd.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | |
| 5 | tsmspropd.p | ⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) | |
| 6 | tsmspropd.j | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐻 ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) = ( ( TopOpen ‘ 𝐻 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ) |
| 8 | 1 | resexd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑦 ) ∈ V ) |
| 9 | 8 2 3 4 5 | gsumpropd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) = ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
| 10 | 9 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) |
| 11 | 7 10 | fveq12d | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) = ( ( ( TopOpen ‘ 𝐻 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 13 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 14 | eqid | ⊢ ( 𝒫 dom 𝐹 ∩ Fin ) = ( 𝒫 dom 𝐹 ∩ Fin ) | |
| 15 | eqid | ⊢ ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) = ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) | |
| 16 | eqidd | ⊢ ( 𝜑 → dom 𝐹 = dom 𝐹 ) | |
| 17 | 12 13 14 15 2 1 16 | tsmsval2 | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 19 | eqid | ⊢ ( TopOpen ‘ 𝐻 ) = ( TopOpen ‘ 𝐻 ) | |
| 20 | 18 19 14 15 3 1 16 | tsmsval2 | ⊢ ( 𝜑 → ( 𝐻 tsums 𝐹 ) = ( ( ( TopOpen ‘ 𝐻 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 21 | 11 17 20 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐻 tsums 𝐹 ) ) |