This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmspropd.f | |- ( ph -> F e. V ) |
|
| tsmspropd.g | |- ( ph -> G e. W ) |
||
| tsmspropd.h | |- ( ph -> H e. X ) |
||
| tsmspropd.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
||
| tsmspropd.p | |- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
||
| tsmspropd.j | |- ( ph -> ( TopOpen ` G ) = ( TopOpen ` H ) ) |
||
| Assertion | tsmspropd | |- ( ph -> ( G tsums F ) = ( H tsums F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmspropd.f | |- ( ph -> F e. V ) |
|
| 2 | tsmspropd.g | |- ( ph -> G e. W ) |
|
| 3 | tsmspropd.h | |- ( ph -> H e. X ) |
|
| 4 | tsmspropd.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
|
| 5 | tsmspropd.p | |- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
|
| 6 | tsmspropd.j | |- ( ph -> ( TopOpen ` G ) = ( TopOpen ` H ) ) |
|
| 7 | 6 | oveq1d | |- ( ph -> ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) = ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ) |
| 8 | 1 | resexd | |- ( ph -> ( F |` y ) e. _V ) |
| 9 | 8 2 3 4 5 | gsumpropd | |- ( ph -> ( G gsum ( F |` y ) ) = ( H gsum ( F |` y ) ) ) |
| 10 | 9 | mpteq2dv | |- ( ph -> ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) = ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) |
| 11 | 7 10 | fveq12d | |- ( ph -> ( ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) = ( ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) ) |
| 12 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 13 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 14 | eqid | |- ( ~P dom F i^i Fin ) = ( ~P dom F i^i Fin ) |
|
| 15 | eqid | |- ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) = ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) |
|
| 16 | eqidd | |- ( ph -> dom F = dom F ) |
|
| 17 | 12 13 14 15 2 1 16 | tsmsval2 | |- ( ph -> ( G tsums F ) = ( ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ) |
| 18 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 19 | eqid | |- ( TopOpen ` H ) = ( TopOpen ` H ) |
|
| 20 | 18 19 14 15 3 1 16 | tsmsval2 | |- ( ph -> ( H tsums F ) = ( ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) ) |
| 21 | 11 17 20 | 3eqtr4d | |- ( ph -> ( G tsums F ) = ( H tsums F ) ) |