This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A and B are members of a Tarski class, their ordered pair is also an element of the class. JFM CLASSES2 th. 4. (Contributed by FL, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskop | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 〈 𝐴 , 𝐵 〉 = { { 𝐴 } , { 𝐴 , 𝐵 } } ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 〈 𝐴 , 𝐵 〉 = { { 𝐴 } , { 𝐴 , 𝐵 } } ) |
| 3 | simp1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 𝑇 ∈ Tarski ) | |
| 4 | tsksn | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → { 𝐴 } ∈ 𝑇 ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 } ∈ 𝑇 ) |
| 6 | tskpr | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 ) | |
| 7 | tskpr | ⊢ ( ( 𝑇 ∈ Tarski ∧ { 𝐴 } ∈ 𝑇 ∧ { 𝐴 , 𝐵 } ∈ 𝑇 ) → { { 𝐴 } , { 𝐴 , 𝐵 } } ∈ 𝑇 ) | |
| 8 | 3 5 6 7 | syl3anc | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { { 𝐴 } , { 𝐴 , 𝐵 } } ∈ 𝑇 ) |
| 9 | 2 8 | eqeltrd | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝑇 ) |