This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton of an element of a Tarski class belongs to the class. JFM CLASSES2 th. 2 (partly). (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 18-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsksn | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → { 𝐴 } ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tskpw | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ∈ 𝑇 ) | |
| 2 | snsspw | ⊢ { 𝐴 } ⊆ 𝒫 𝐴 | |
| 3 | tskss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ { 𝐴 } ⊆ 𝒫 𝐴 ) → { 𝐴 } ∈ 𝑇 ) | |
| 4 | 2 3 | mp3an3 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ) → { 𝐴 } ∈ 𝑇 ) |
| 5 | 1 4 | syldan | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → { 𝐴 } ∈ 𝑇 ) |