This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of finite ordinals _om is a transitive class. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trom | ⊢ Tr ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr2 | ⊢ ( Tr ω ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ω ) → 𝑦 ∈ ω ) ) | |
| 2 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 3 | 2 | expcom | ⊢ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ On → 𝑦 ∈ On ) ) |
| 4 | limord | ⊢ ( Lim 𝑧 → Ord 𝑧 ) | |
| 5 | ordtr | ⊢ ( Ord 𝑧 → Tr 𝑧 ) | |
| 6 | trel | ⊢ ( Tr 𝑧 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑧 ) ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( Lim 𝑧 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑧 ) ) |
| 8 | 7 | expd | ⊢ ( Lim 𝑧 → ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 9 | 8 | com12 | ⊢ ( 𝑦 ∈ 𝑥 → ( Lim 𝑧 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 10 | 9 | a2d | ⊢ ( 𝑦 ∈ 𝑥 → ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) → ( Lim 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 11 | 10 | alimdv | ⊢ ( 𝑦 ∈ 𝑥 → ( ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) → ∀ 𝑧 ( Lim 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 12 | 3 11 | anim12d | ⊢ ( 𝑦 ∈ 𝑥 → ( ( 𝑥 ∈ On ∧ ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ) → ( 𝑦 ∈ On ∧ ∀ 𝑧 ( Lim 𝑧 → 𝑦 ∈ 𝑧 ) ) ) ) |
| 13 | elom | ⊢ ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ) ) | |
| 14 | elom | ⊢ ( 𝑦 ∈ ω ↔ ( 𝑦 ∈ On ∧ ∀ 𝑧 ( Lim 𝑧 → 𝑦 ∈ 𝑧 ) ) ) | |
| 15 | 12 13 14 | 3imtr4g | ⊢ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ ω → 𝑦 ∈ ω ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ω ) → 𝑦 ∈ ω ) |
| 17 | 16 | ax-gen | ⊢ ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ω ) → 𝑦 ∈ ω ) |
| 18 | 1 17 | mpgbir | ⊢ Tr ω |