This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of finite ordinals _om is a transitive class. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trom | |- Tr _om |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr2 | |- ( Tr _om <-> A. y A. x ( ( y e. x /\ x e. _om ) -> y e. _om ) ) |
|
| 2 | onelon | |- ( ( x e. On /\ y e. x ) -> y e. On ) |
|
| 3 | 2 | expcom | |- ( y e. x -> ( x e. On -> y e. On ) ) |
| 4 | limord | |- ( Lim z -> Ord z ) |
|
| 5 | ordtr | |- ( Ord z -> Tr z ) |
|
| 6 | trel | |- ( Tr z -> ( ( y e. x /\ x e. z ) -> y e. z ) ) |
|
| 7 | 4 5 6 | 3syl | |- ( Lim z -> ( ( y e. x /\ x e. z ) -> y e. z ) ) |
| 8 | 7 | expd | |- ( Lim z -> ( y e. x -> ( x e. z -> y e. z ) ) ) |
| 9 | 8 | com12 | |- ( y e. x -> ( Lim z -> ( x e. z -> y e. z ) ) ) |
| 10 | 9 | a2d | |- ( y e. x -> ( ( Lim z -> x e. z ) -> ( Lim z -> y e. z ) ) ) |
| 11 | 10 | alimdv | |- ( y e. x -> ( A. z ( Lim z -> x e. z ) -> A. z ( Lim z -> y e. z ) ) ) |
| 12 | 3 11 | anim12d | |- ( y e. x -> ( ( x e. On /\ A. z ( Lim z -> x e. z ) ) -> ( y e. On /\ A. z ( Lim z -> y e. z ) ) ) ) |
| 13 | elom | |- ( x e. _om <-> ( x e. On /\ A. z ( Lim z -> x e. z ) ) ) |
|
| 14 | elom | |- ( y e. _om <-> ( y e. On /\ A. z ( Lim z -> y e. z ) ) ) |
|
| 15 | 12 13 14 | 3imtr4g | |- ( y e. x -> ( x e. _om -> y e. _om ) ) |
| 16 | 15 | imp | |- ( ( y e. x /\ x e. _om ) -> y e. _om ) |
| 17 | 16 | ax-gen | |- A. x ( ( y e. x /\ x e. _om ) -> y e. _om ) |
| 18 | 1 17 | mpgbir | |- Tr _om |