This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of Enderton p. 73. trintALT is an alternate proof of trint . trintALT is trintALTVD without virtual deductions and was automatically derived from trintALTVD using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE__WITH *" command. (Contributed by Alan Sare, 17-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trintALT | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ 𝑦 ) | |
| 2 | 1 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ 𝑦 ) ) |
| 3 | iidn3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐴 ) ) ) | |
| 4 | id | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ) | |
| 5 | rspsbc | ⊢ ( 𝑞 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) | |
| 6 | 3 4 5 | ee31 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) ) |
| 7 | trsbc | ⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 ↔ Tr 𝑞 ) ) | |
| 8 | 7 | biimpd | ⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 → Tr 𝑞 ) ) |
| 9 | 3 6 8 | ee33 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → Tr 𝑞 ) ) ) |
| 10 | simpr | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑦 ∈ ∩ 𝐴 ) | |
| 11 | 10 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑦 ∈ ∩ 𝐴 ) ) |
| 12 | elintg | ⊢ ( 𝑦 ∈ ∩ 𝐴 → ( 𝑦 ∈ ∩ 𝐴 ↔ ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) ) | |
| 13 | 12 | ibi | ⊢ ( 𝑦 ∈ ∩ 𝐴 → ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) |
| 14 | 11 13 | syl6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) ) |
| 15 | rsp | ⊢ ( ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 → ( 𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞 ) ) | |
| 16 | 14 15 | syl6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞 ) ) ) |
| 17 | trel | ⊢ ( Tr 𝑞 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞 ) → 𝑧 ∈ 𝑞 ) ) | |
| 18 | 17 | expd | ⊢ ( Tr 𝑞 → ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑞 → 𝑧 ∈ 𝑞 ) ) ) |
| 19 | 9 2 16 18 | ee323 | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞 ) ) ) |
| 20 | 19 | ralrimdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) ) |
| 21 | elintg | ⊢ ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) ) | |
| 22 | 21 | biimprd | ⊢ ( 𝑧 ∈ 𝑦 → ( ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 → 𝑧 ∈ ∩ 𝐴 ) ) |
| 23 | 2 20 22 | syl6c | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
| 24 | 23 | alrimivv | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
| 25 | dftr2 | ⊢ ( Tr ∩ 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴 ) |