This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tpostpos2 | |- ( ( Rel F /\ Rel dom F ) -> tpos tpos F = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpostpos | |- tpos tpos F = ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
|
| 2 | relrelss | |- ( ( Rel F /\ Rel dom F ) <-> F C_ ( ( _V X. _V ) X. _V ) ) |
|
| 3 | ssun1 | |- ( _V X. _V ) C_ ( ( _V X. _V ) u. { (/) } ) |
|
| 4 | xpss1 | |- ( ( _V X. _V ) C_ ( ( _V X. _V ) u. { (/) } ) -> ( ( _V X. _V ) X. _V ) C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( _V X. _V ) X. _V ) C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) |
| 6 | sstr | |- ( ( F C_ ( ( _V X. _V ) X. _V ) /\ ( ( _V X. _V ) X. _V ) C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) -> F C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
|
| 7 | 5 6 | mpan2 | |- ( F C_ ( ( _V X. _V ) X. _V ) -> F C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
| 8 | 2 7 | sylbi | |- ( ( Rel F /\ Rel dom F ) -> F C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
| 9 | dfss2 | |- ( F C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) <-> ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) = F ) |
|
| 10 | 8 9 | sylib | |- ( ( Rel F /\ Rel dom F ) -> ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) = F ) |
| 11 | 1 10 | eqtrid | |- ( ( Rel F /\ Rel dom F ) -> tpos tpos F = F ) |