This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposf12 | ⊢ ( Rel 𝐴 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → tpos 𝐹 : ◡ 𝐴 –1-1→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 2 | relcnv | ⊢ Rel ◡ 𝐴 | |
| 3 | cnvf1o | ⊢ ( Rel ◡ 𝐴 → ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1-onto→ ◡ ◡ 𝐴 ) | |
| 4 | f1of1 | ⊢ ( ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1-onto→ ◡ ◡ 𝐴 → ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ ◡ ◡ 𝐴 ) | |
| 5 | 2 3 4 | mp2b | ⊢ ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ ◡ ◡ 𝐴 |
| 6 | simpl | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → Rel 𝐴 ) | |
| 7 | dfrel2 | ⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) | |
| 8 | 6 7 | sylib | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ◡ ◡ 𝐴 = 𝐴 ) |
| 9 | f1eq3 | ⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ ◡ ◡ 𝐴 ↔ ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ ◡ ◡ 𝐴 ↔ ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) ) |
| 11 | 5 10 | mpbii | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) |
| 12 | f1dm | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 13 | 1 12 | syl | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → dom 𝐹 = 𝐴 ) |
| 14 | 13 | cnveqd | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ◡ dom 𝐹 = ◡ 𝐴 ) |
| 15 | mpteq1 | ⊢ ( ◡ dom 𝐹 = ◡ 𝐴 → ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) ) | |
| 16 | f1eq1 | ⊢ ( ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) → ( ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ↔ ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) ) | |
| 17 | 14 15 16 | 3syl | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ↔ ( 𝑥 ∈ ◡ 𝐴 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) ) |
| 18 | 11 17 | mpbird | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) |
| 19 | f1co | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) : ◡ 𝐴 –1-1→ 𝐴 ) → ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) : ◡ 𝐴 –1-1→ 𝐵 ) | |
| 20 | 1 18 19 | syl2anc | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) : ◡ 𝐴 –1-1→ 𝐵 ) |
| 21 | 12 | releqd | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( Rel dom 𝐹 ↔ Rel 𝐴 ) ) |
| 22 | 21 | biimparc | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → Rel dom 𝐹 ) |
| 23 | dftpos2 | ⊢ ( Rel dom 𝐹 → tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) ) | |
| 24 | f1eq1 | ⊢ ( tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) → ( tpos 𝐹 : ◡ 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) : ◡ 𝐴 –1-1→ 𝐵 ) ) | |
| 25 | 22 23 24 | 3syl | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( tpos 𝐹 : ◡ 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) : ◡ 𝐴 –1-1→ 𝐵 ) ) |
| 26 | 20 25 | mpbird | ⊢ ( ( Rel 𝐴 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → tpos 𝐹 : ◡ 𝐴 –1-1→ 𝐵 ) |
| 27 | 26 | ex | ⊢ ( Rel 𝐴 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → tpos 𝐹 : ◡ 𝐴 –1-1→ 𝐵 ) ) |