This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposf1o2 | ⊢ ( Rel 𝐴 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → tpos 𝐹 : ◡ 𝐴 –1-1-onto→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposf12 | ⊢ ( Rel 𝐴 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → tpos 𝐹 : ◡ 𝐴 –1-1→ 𝐵 ) ) | |
| 2 | tposfo2 | ⊢ ( Rel 𝐴 → ( 𝐹 : 𝐴 –onto→ 𝐵 → tpos 𝐹 : ◡ 𝐴 –onto→ 𝐵 ) ) | |
| 3 | 1 2 | anim12d | ⊢ ( Rel 𝐴 → ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( tpos 𝐹 : ◡ 𝐴 –1-1→ 𝐵 ∧ tpos 𝐹 : ◡ 𝐴 –onto→ 𝐵 ) ) ) |
| 4 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) | |
| 5 | df-f1o | ⊢ ( tpos 𝐹 : ◡ 𝐴 –1-1-onto→ 𝐵 ↔ ( tpos 𝐹 : ◡ 𝐴 –1-1→ 𝐵 ∧ tpos 𝐹 : ◡ 𝐴 –onto→ 𝐵 ) ) | |
| 6 | 3 4 5 | 3imtr4g | ⊢ ( Rel 𝐴 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → tpos 𝐹 : ◡ 𝐴 –1-1-onto→ 𝐵 ) ) |