This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposexg | ⊢ ( 𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposssxp | ⊢ tpos 𝐹 ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) | |
| 2 | dmexg | ⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) | |
| 3 | cnvexg | ⊢ ( dom 𝐹 ∈ V → ◡ dom 𝐹 ∈ V ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐹 ∈ 𝑉 → ◡ dom 𝐹 ∈ V ) |
| 5 | p0ex | ⊢ { ∅ } ∈ V | |
| 6 | unexg | ⊢ ( ( ◡ dom 𝐹 ∈ V ∧ { ∅ } ∈ V ) → ( ◡ dom 𝐹 ∪ { ∅ } ) ∈ V ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( 𝐹 ∈ 𝑉 → ( ◡ dom 𝐹 ∪ { ∅ } ) ∈ V ) |
| 8 | rnexg | ⊢ ( 𝐹 ∈ 𝑉 → ran 𝐹 ∈ V ) | |
| 9 | 7 8 | xpexd | ⊢ ( 𝐹 ∈ 𝑉 → ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ∈ V ) |
| 10 | ssexg | ⊢ ( ( tpos 𝐹 ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ∧ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ∈ V ) → tpos 𝐹 ∈ V ) | |
| 11 | 1 9 10 | sylancr | ⊢ ( 𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V ) |