This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | toprntopon | ⊢ Top = ∪ ran TopOn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon2 | ⊢ ( 𝑥 ∈ Top ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) | |
| 2 | fvex | ⊢ ( TopOn ‘ ∪ 𝑥 ) ∈ V | |
| 3 | eleq2 | ⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) ) | |
| 4 | eleq1 | ⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( 𝑦 ∈ ran TopOn ↔ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ↔ ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ) ) |
| 6 | simpl | ⊢ ( ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) → 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) | |
| 7 | fntopon | ⊢ TopOn Fn V | |
| 8 | vuniex | ⊢ ∪ 𝑥 ∈ V | |
| 9 | fnfvelrn | ⊢ ( ( TopOn Fn V ∧ ∪ 𝑥 ∈ V ) → ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) | |
| 10 | 7 8 9 | mp2an | ⊢ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn |
| 11 | 10 | jctr | ⊢ ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) → ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ) |
| 12 | 6 11 | impbii | ⊢ ( ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) |
| 13 | 5 12 | bitrdi | ⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) ) |
| 14 | 2 13 | spcev | ⊢ ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
| 15 | 1 14 | sylbi | ⊢ ( 𝑥 ∈ Top → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
| 16 | funtopon | ⊢ Fun TopOn | |
| 17 | elrnrexdm | ⊢ ( Fun TopOn → ( 𝑦 ∈ ran TopOn → ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) ) ) | |
| 18 | 16 17 | ax-mp | ⊢ ( 𝑦 ∈ ran TopOn → ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) ) |
| 19 | rexex | ⊢ ( ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) → ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑦 ∈ ran TopOn → ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) |
| 21 | 19.42v | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( TopOn ‘ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) ) | |
| 22 | eqimss | ⊢ ( 𝑦 = ( TopOn ‘ 𝑧 ) → 𝑦 ⊆ ( TopOn ‘ 𝑧 ) ) | |
| 23 | 22 | sseld | ⊢ ( 𝑦 = ( TopOn ‘ 𝑧 ) → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) ) |
| 24 | 23 | impcom | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( TopOn ‘ 𝑧 ) ) → 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
| 25 | 24 | eximi | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( TopOn ‘ 𝑧 ) ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
| 26 | 21 25 | sylbir | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
| 27 | 20 26 | sylan2 | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
| 28 | topontop | ⊢ ( 𝑥 ∈ ( TopOn ‘ 𝑧 ) → 𝑥 ∈ Top ) | |
| 29 | 28 | exlimiv | ⊢ ( ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) → 𝑥 ∈ Top ) |
| 30 | 27 29 | syl | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) → 𝑥 ∈ Top ) |
| 31 | 30 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) → 𝑥 ∈ Top ) |
| 32 | 15 31 | impbii | ⊢ ( 𝑥 ∈ Top ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
| 33 | eluni | ⊢ ( 𝑥 ∈ ∪ ran TopOn ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) | |
| 34 | 32 33 | bitr4i | ⊢ ( 𝑥 ∈ Top ↔ 𝑥 ∈ ∪ ran TopOn ) |
| 35 | 34 | eqriv | ⊢ Top = ∪ ran TopOn |