This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | topclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| toplatlub.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| toplatlub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐽 ) | ||
| toplatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | ||
| toplatglb.e | ⊢ ( 𝜑 → 𝑆 ≠ ∅ ) | ||
| Assertion | toplatglb | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topclat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| 2 | toplatlub.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 3 | toplatlub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐽 ) | |
| 4 | toplatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐼 ) | |
| 5 | toplatglb.e | ⊢ ( 𝜑 → 𝑆 ≠ ∅ ) | |
| 6 | 4 | a1i | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) |
| 7 | intssuni | ⊢ ( 𝑆 ≠ ∅ → ∩ 𝑆 ⊆ ∪ 𝑆 ) | |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → ∩ 𝑆 ⊆ ∪ 𝑆 ) |
| 9 | 3 | unissd | ⊢ ( 𝜑 → ∪ 𝑆 ⊆ ∪ 𝐽 ) |
| 10 | 8 9 | sstrd | ⊢ ( 𝜑 → ∩ 𝑆 ⊆ ∪ 𝐽 ) |
| 11 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | ntrval | ⊢ ( ( 𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) ) |
| 13 | 2 10 12 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) ) |
| 14 | 2 | uniexd | ⊢ ( 𝜑 → ∪ 𝐽 ∈ V ) |
| 15 | 14 10 | ssexd | ⊢ ( 𝜑 → ∩ 𝑆 ∈ V ) |
| 16 | inpw | ⊢ ( ∩ 𝑆 ∈ V → ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆 } ) | |
| 17 | 16 | unieqd | ⊢ ( ∩ 𝑆 ∈ V → ∪ ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) = ∪ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 18 | 15 17 | syl | ⊢ ( 𝜑 → ∪ ( 𝐽 ∩ 𝒫 ∩ 𝑆 ) = ∪ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 19 | 13 18 | eqtrd | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) = ∪ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 20 | 11 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) ∈ 𝐽 ) |
| 21 | 2 10 20 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) ∈ 𝐽 ) |
| 22 | 1 2 3 6 19 21 | ipoglb | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = ( ( int ‘ 𝐽 ) ‘ ∩ 𝑆 ) ) |