This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a structure equipped with a norm is a normed group, the structure itself must be a group. (Contributed by AV, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tngngp3.t | |- T = ( G toNrmGrp N ) |
|
| Assertion | tnggrpr | |- ( ( N e. V /\ T e. NrmGrp ) -> G e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngp3.t | |- T = ( G toNrmGrp N ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | 1 2 | tngbas | |- ( N e. V -> ( Base ` G ) = ( Base ` T ) ) |
| 4 | eqidd | |- ( N e. V -> ( Base ` G ) = ( Base ` G ) ) |
|
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 1 5 | tngplusg | |- ( N e. V -> ( +g ` G ) = ( +g ` T ) ) |
| 7 | 6 | eqcomd | |- ( N e. V -> ( +g ` T ) = ( +g ` G ) ) |
| 8 | 7 | oveqdr | |- ( ( N e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` T ) y ) = ( x ( +g ` G ) y ) ) |
| 9 | 3 4 8 | grppropd | |- ( N e. V -> ( T e. Grp <-> G e. Grp ) ) |
| 10 | 9 | biimpd | |- ( N e. V -> ( T e. Grp -> G e. Grp ) ) |
| 11 | ngpgrp | |- ( T e. NrmGrp -> T e. Grp ) |
|
| 12 | 10 11 | impel | |- ( ( N e. V /\ T e. NrmGrp ) -> G e. Grp ) |