This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a structure equipped with a norm is a normed group, the structure itself must be a group. (Contributed by AV, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tngngp3.t | ||
| Assertion | tnggrpr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngp3.t | ||
| 2 | eqid | ||
| 3 | 1 2 | tngbas | |
| 4 | eqidd | ||
| 5 | eqid | ||
| 6 | 1 5 | tngplusg | |
| 7 | 6 | eqcomd | |
| 8 | 7 | oveqdr | |
| 9 | 3 4 8 | grppropd | |
| 10 | 9 | biimpd | |
| 11 | ngpgrp | ||
| 12 | 10 11 | impel |