This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsxps.p | ⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| tmsxps.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| tmsxps.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) | ||
| tmsxpsval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| tmsxpsval.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | ||
| tmsxpsval.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| tmsxpsval.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | ||
| Assertion | tmsxpsval | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝑃 〈 𝐶 , 𝐷 〉 ) = sup ( { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | ⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| 2 | tmsxps.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | tmsxps.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 4 | tmsxpsval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 5 | tmsxpsval.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | |
| 6 | tmsxpsval.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 7 | tmsxpsval.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | |
| 8 | eqid | ⊢ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) = ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) | |
| 10 | eqid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) | |
| 11 | eqid | ⊢ ( toMetSp ‘ 𝑀 ) = ( toMetSp ‘ 𝑀 ) | |
| 12 | 11 | tmsxms | ⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
| 14 | eqid | ⊢ ( toMetSp ‘ 𝑁 ) = ( toMetSp ‘ 𝑁 ) | |
| 15 | 14 | tmsxms | ⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
| 17 | eqid | ⊢ ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) = ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) | |
| 18 | eqid | ⊢ ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) = ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) | |
| 19 | 11 | tmsds | ⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 = ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 20 | 2 19 | syl | ⊢ ( 𝜑 → 𝑀 = ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 21 | 11 | tmsbas | ⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 22 | 2 21 | syl | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 23 | 22 | fveq2d | ⊢ ( 𝜑 → ( ∞Met ‘ 𝑋 ) = ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) |
| 24 | 2 20 23 | 3eltr3d | ⊢ ( 𝜑 → ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) |
| 25 | ssid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ⊆ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) | |
| 26 | xmetres2 | ⊢ ( ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ∧ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ⊆ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) → ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( 𝜑 → ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) |
| 28 | 14 | tmsds | ⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝑁 = ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 29 | 3 28 | syl | ⊢ ( 𝜑 → 𝑁 = ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 30 | 14 | tmsbas | ⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝑌 = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 31 | 3 30 | syl | ⊢ ( 𝜑 → 𝑌 = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 32 | 31 | fveq2d | ⊢ ( 𝜑 → ( ∞Met ‘ 𝑌 ) = ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 33 | 3 29 32 | 3eltr3d | ⊢ ( 𝜑 → ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 34 | ssid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ⊆ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) | |
| 35 | xmetres2 | ⊢ ( ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ∧ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ⊆ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) → ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) | |
| 36 | 33 34 35 | sylancl | ⊢ ( 𝜑 → ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 37 | 4 22 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 38 | 5 31 | eleqtrd | ⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 39 | 6 22 | eleqtrd | ⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 40 | 7 31 | eleqtrd | ⊢ ( 𝜑 → 𝐷 ∈ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 41 | 8 9 10 13 16 1 17 18 27 36 37 38 39 40 | xpsdsval | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝑃 〈 𝐶 , 𝐷 〉 ) = sup ( { ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) , ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) } , ℝ* , < ) ) |
| 42 | 37 39 | ovresd | ⊢ ( 𝜑 → ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) = ( 𝐴 ( dist ‘ ( toMetSp ‘ 𝑀 ) ) 𝐶 ) ) |
| 43 | 20 | oveqd | ⊢ ( 𝜑 → ( 𝐴 𝑀 𝐶 ) = ( 𝐴 ( dist ‘ ( toMetSp ‘ 𝑀 ) ) 𝐶 ) ) |
| 44 | 42 43 | eqtr4d | ⊢ ( 𝜑 → ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) = ( 𝐴 𝑀 𝐶 ) ) |
| 45 | 38 40 | ovresd | ⊢ ( 𝜑 → ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) = ( 𝐵 ( dist ‘ ( toMetSp ‘ 𝑁 ) ) 𝐷 ) ) |
| 46 | 29 | oveqd | ⊢ ( 𝜑 → ( 𝐵 𝑁 𝐷 ) = ( 𝐵 ( dist ‘ ( toMetSp ‘ 𝑁 ) ) 𝐷 ) ) |
| 47 | 45 46 | eqtr4d | ⊢ ( 𝜑 → ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) = ( 𝐵 𝑁 𝐷 ) ) |
| 48 | 44 47 | preq12d | ⊢ ( 𝜑 → { ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) , ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) } = { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } ) |
| 49 | 48 | supeq1d | ⊢ ( 𝜑 → sup ( { ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) , ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) } , ℝ* , < ) = sup ( { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } , ℝ* , < ) ) |
| 50 | 41 49 | eqtrd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝑃 〈 𝐶 , 𝐷 〉 ) = sup ( { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } , ℝ* , < ) ) |