This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof shortened by AV, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| thlbas.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| Assertion | thlbas | ⊢ 𝐶 = ( Base ‘ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| 2 | thlbas.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | 2 | fvexi | ⊢ 𝐶 ∈ V |
| 4 | eqid | ⊢ ( toInc ‘ 𝐶 ) = ( toInc ‘ 𝐶 ) | |
| 5 | 4 | ipobas | ⊢ ( 𝐶 ∈ V → 𝐶 = ( Base ‘ ( toInc ‘ 𝐶 ) ) ) |
| 6 | 3 5 | ax-mp | ⊢ 𝐶 = ( Base ‘ ( toInc ‘ 𝐶 ) ) |
| 7 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 8 | basendxnocndx | ⊢ ( Base ‘ ndx ) ≠ ( oc ‘ ndx ) | |
| 9 | 7 8 | setsnid | ⊢ ( Base ‘ ( toInc ‘ 𝐶 ) ) = ( Base ‘ ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
| 10 | 6 9 | eqtri | ⊢ 𝐶 = ( Base ‘ ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
| 11 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
| 12 | 1 2 4 11 | thlval | ⊢ ( 𝑊 ∈ V → 𝐾 = ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝑊 ∈ V → ( Base ‘ 𝐾 ) = ( Base ‘ ( ( toInc ‘ 𝐶 ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) ) |
| 14 | 10 13 | eqtr4id | ⊢ ( 𝑊 ∈ V → 𝐶 = ( Base ‘ 𝐾 ) ) |
| 15 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 16 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( ClSubSp ‘ 𝑊 ) = ∅ ) | |
| 17 | 2 16 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝐶 = ∅ ) |
| 18 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( toHL ‘ 𝑊 ) = ∅ ) | |
| 19 | 1 18 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝐾 = ∅ ) |
| 20 | 19 | fveq2d | ⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝐾 ) = ( Base ‘ ∅ ) ) |
| 21 | 15 17 20 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → 𝐶 = ( Base ‘ 𝐾 ) ) |
| 22 | 14 21 | pm2.61i | ⊢ 𝐶 = ( Base ‘ 𝐾 ) |