This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof shortened by AV, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thlval.k | |- K = ( toHL ` W ) |
|
| thlbas.c | |- C = ( ClSubSp ` W ) |
||
| Assertion | thlbas | |- C = ( Base ` K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlval.k | |- K = ( toHL ` W ) |
|
| 2 | thlbas.c | |- C = ( ClSubSp ` W ) |
|
| 3 | 2 | fvexi | |- C e. _V |
| 4 | eqid | |- ( toInc ` C ) = ( toInc ` C ) |
|
| 5 | 4 | ipobas | |- ( C e. _V -> C = ( Base ` ( toInc ` C ) ) ) |
| 6 | 3 5 | ax-mp | |- C = ( Base ` ( toInc ` C ) ) |
| 7 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 8 | basendxnocndx | |- ( Base ` ndx ) =/= ( oc ` ndx ) |
|
| 9 | 7 8 | setsnid | |- ( Base ` ( toInc ` C ) ) = ( Base ` ( ( toInc ` C ) sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
| 10 | 6 9 | eqtri | |- C = ( Base ` ( ( toInc ` C ) sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
| 11 | eqid | |- ( ocv ` W ) = ( ocv ` W ) |
|
| 12 | 1 2 4 11 | thlval | |- ( W e. _V -> K = ( ( toInc ` C ) sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) |
| 13 | 12 | fveq2d | |- ( W e. _V -> ( Base ` K ) = ( Base ` ( ( toInc ` C ) sSet <. ( oc ` ndx ) , ( ocv ` W ) >. ) ) ) |
| 14 | 10 13 | eqtr4id | |- ( W e. _V -> C = ( Base ` K ) ) |
| 15 | base0 | |- (/) = ( Base ` (/) ) |
|
| 16 | fvprc | |- ( -. W e. _V -> ( ClSubSp ` W ) = (/) ) |
|
| 17 | 2 16 | eqtrid | |- ( -. W e. _V -> C = (/) ) |
| 18 | fvprc | |- ( -. W e. _V -> ( toHL ` W ) = (/) ) |
|
| 19 | 1 18 | eqtrid | |- ( -. W e. _V -> K = (/) ) |
| 20 | 19 | fveq2d | |- ( -. W e. _V -> ( Base ` K ) = ( Base ` (/) ) ) |
| 21 | 15 17 20 | 3eqtr4a | |- ( -. W e. _V -> C = ( Base ` K ) ) |
| 22 | 14 21 | pm2.61i | |- C = ( Base ` K ) |