This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, F is a section of G iff G is a section of F . Example 7.25(4) of Adamek p. 108. (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| Assertion | thincsect2 | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | thincsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 6 | ancom | ⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) ) |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | 1 2 3 4 5 8 | thincsect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) |
| 10 | 1 2 4 3 5 8 | thincsect | ⊢ ( 𝜑 → ( 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) ) |
| 11 | 7 9 10 | 3bitr4d | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |