This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, F is a section of G iff G is a section of F . Example 7.25(4) of Adamek p. 108. (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
| thincsect.b | |- B = ( Base ` C ) |
||
| thincsect.x | |- ( ph -> X e. B ) |
||
| thincsect.y | |- ( ph -> Y e. B ) |
||
| thincsect.s | |- S = ( Sect ` C ) |
||
| Assertion | thincsect2 | |- ( ph -> ( F ( X S Y ) G <-> G ( Y S X ) F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincsect.b | |- B = ( Base ` C ) |
|
| 3 | thincsect.x | |- ( ph -> X e. B ) |
|
| 4 | thincsect.y | |- ( ph -> Y e. B ) |
|
| 5 | thincsect.s | |- S = ( Sect ` C ) |
|
| 6 | ancom | |- ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) <-> ( G e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) ) ) |
|
| 7 | 6 | a1i | |- ( ph -> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) <-> ( G e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) ) ) ) |
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | 1 2 3 4 5 8 | thincsect | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) ) ) |
| 10 | 1 2 4 3 5 8 | thincsect | |- ( ph -> ( G ( Y S X ) F <-> ( G e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) ) ) ) |
| 11 | 7 9 10 | 3bitr4d | |- ( ph -> ( F ( X S Y ) G <-> G ( Y S X ) F ) ) |